• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 115
  • 30
  • 16
  • 16
  • 16
  • 16
  • 16
  • 16
  • 5
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 190
  • 92
  • 88
  • 47
  • 43
  • 36
  • 25
  • 24
  • 24
  • 20
  • 20
  • 19
  • 16
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

The physiological responses of salinity stressed tomato plants to mycorrhizal infection and variation in rhizosphere carbon dioxide concentration

Lintnaar, Melissa 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2000. / ENGLISH ABSTRACT: This investigation was undertaken to determine whether elevated concentrations of dissolved inorganic carbon (DIC) supplied to plant roots could improve plant growth and alleviate the effects of salinity stress on tomato plants infected with arbuscular mycorrhizae. Lycopersicon esculentum cv. FI44 seedlings were grown in hydroponic culture (pH 5.8) with 0 and 75 mM NaCI and with or without infection with the fungus Glomus mosseae. The root solution was aerated with ambient CO2 (360 ppm) or elevated CO2 ( 5 000 ppm) concentrations. The arbuscular and hypha I components of mycorrhizal infection as well as the percentages total infection were decreased or increased according to the variation in seasons. The plant dry weight of mycorrhizal plants was increased by 30% compared to non-mycorrhizal plants at elevated concentrations of CO2, while the dry weight was decreased by 68% at ambient CO2 concentrations. Elevated CO2 also stimulated the growth of the mycorrhizal fungus. Elevated CO2 increased the plant dry weight and stimulated fungal growth of mycorrhizal plants possibly by the provision of carbon due to the incorporation of HCO)- by PEPc. Plant roots supplied with elevated concentrations of CO2 had a decreased CO2 release rate compared to roots at ambient CO2. This decrease in CO2 release rate at elevated CO2 was due to the increased incorporation of HC03- by PEPc activity. Under conditions of salinity stress plants had a higher ratio of N03-: reduced N in the xylem sap compared to plants supplied with 0 mM NaCI. Under salinity stress conditions, more N03- was transported in the xylem stream possibly because of the production of more organic acids instead of amino acids due to low P conditions under which the plants were grown. The N03· uptake rate of plants increased at elevated concentrations of CO2 in the absence of salinity because the HCO)- could be used for the production of amino acids. In the presence of salinity, carbon was possibly used for the production of organic acids that diverted carbon away from the synthesis of amino acids. It was concluded that mycorrhizas were beneficial for plant growth under conditions of salinity stress provided that there was an additional source of carbon. Arbuscular mycorrhizal infection did not improve the nutrient uptake of hydroponically grown plants. / AFRIKAANSE OPSOMMING: In hierdie studie was die effek van verhoogde konsentrasies opgeloste anorganiese koolstof wat aan plant wortels verskaf is, getoets om te bepaal of dit die groei van plante kan verbeter asook of sout stres verlig kon word in tamatie plante wat met arbuskulêre mikorrhizas geïnfekteer was. Lycorpersicon esculentum cv. FJ44 saailinge was in water kultuur gegroei (pH 5.8) met 0 en 75 mM NaCI asook met of sonder infeksie met die fungus Glomus mosseae. Die plant wortels was bespuit met normale CO2 (360 dele per miljoen (dpm)) sowel as verhoogde CO2 (5 000 dpm) konsentrasies. Die arbuskulere en hife komponente, sowel as die persentasie infeksie was vermeerder of verminder na gelang van die verandering in seisoen. Die plant droë massa van mikorrhiza geïnfekteerde plante by verhoogde CO2 konsentrasies was verhoog met 30% in vergelyking met plante wat nie geïnfekteer was nie, terwyl die droë massa met 68% afgeneem het by gewone CO2 konsentrasies. Verhoogde CO2 konsentrasies het moontlik die plant droë massa en die groei van die fungus verbeter deur koolstof te verskaf as gevolg van die vaslegging van HCO)- deur die werking van PEP karboksilase. Plant wortels wat met verhoogde CO2 konsentrasies bespuit was, het 'n verlaagde CO2 vrystelling getoon in vergelyking met die wortels by normale CO2 vlakke. Die vermindering in CO2 vrystelling van wortels by verhoogde CO2 was die gevolg van die vaslegging van HC03- deur PEPk aktiwiteit. Onder toestande van sout stres, het plante 'n groter hoeveelheid N03- gereduseerde N in die xileemsap bevat in vergelyking met plante wat onder geen sout stres was nie, asook meer NO)- was in die xileemsap vervoer moontlik omdat meer organiese sure geproduseer was ten koste van amino sure. Dit was die moontlike gevolg omdat die plante onder lae P toestande gegroei het. Die tempo van NO.; opname was verhoog onder verhoogde CO2 konsentrasies en in die afwesigheid van sout stres omdat die HCO)- vir die produksie van amino sure gebruik was. In die teenwoordigheid van sout was koolstof moontlik gebruik om organiese sure te vervaardig wat koolstof weggeneem het van die vervaardiging van amino sure. Daar is tot die slotsom gekom dat mikorrhizas voordelig is vir die groei van plante onder toestande van sout stres mits daar 'n addisionele bron van koolstof teenwoordig is. Arbuskulere mikorrhiza infeksie het 'n geringe invloed gehad op die opname van voedingstowwe van plante wat in waterkultuur gegroei was.
122

NUTRIENT AND MYCORRHIZAL EFFECTS ON THE ROOT-SHOOT RATIO OF CONTAINERIZED PONDEROSA PINE SEEDLINGS.

CORNETT, ZANE J. January 1982 (has links)
Attempts at reforestation of many sites in the southwestern United States have repeatedly failed. Experience and research show that moisture stress is the primary cause of seedling mortality. Therefore, it is of utmost importance to produce planting stock for these areas that are as drought tolerant as possible. Seedlings with high ratios of root mass to shoot mass and adequate mycorrhizal infections should be more resistant to harsh conditions than most seedlings currently produced in nurseries and greenhouses. Inferences from other research indicated that the root-shoot ratios of seedlings could be increased solely by decreasing the amount of nitrogen supplied to them. Mycorrhizal formation would also be enhanced by minimal nitrogen levels. Containerized ponderosa pine seedlings (Pinus ponderosa Lawson var. scopulorum Engelm.) were grown in commercial greenhouses at various levels of nitrogen fertilization and treated with several mycorrhizal inoculums. Mycorrhizal treatments significantly increased shoot height and diameter, but no other seedling parameters. The inoculums did not affect the root-shoot ratio or the percent of short roots that became infected. Nitrogen levels significantly affected all parameters measured. As nitrogen concentration increased, shoot height, diameter, and weight increased, while root weight, root-shoot ratios, and mycorrhizal infections decreased. The inverse relationship between fertilizer nitrogen concentration and the resulting root-shoot ratios of the seedlings was linear and highly correlated. Nitrogen and percent mycorrhizal infection was nearly linear and also inversely correlated. The results of this research are immediately applicable to current greenhouse and nursery operations. When stock is to be planted on sites where seedling survival may be compromised by harsh environmental conditions, production methods should be modified to yield seedlings with maximum root-shoot ratios and heavily infected with mycorrhizae.
123

The influence of phosphorous, copper, zinc and arbuscular mycorrhiza on growth, photosynthetic processes and financial viability of artemisia afra grown in a simulated marginial soil of the Western Cape

Koehorst, Robin Russell January 2013 (has links)
Thesis (MTech (Horticulture))--Cape Peninsula University of Technology, 2013. / This study evaluated the effects of supplementary phosphorus, copper and zinc alone and in conjunction with arbuscular mycorrhiza on Artemisia afra grown in a simulated soil medium. The treatments consisted two groups. Group A had no mycorrhizal inoculation and 1) no supplementary fertilization, 2) supplementary zinc application, 3) supplementary copper 4) supplementary phosphorus 5) supplementary zinc and copper, 6) supplementary zinc and phosphorus, 7) supplementary copper and phosphorus, 8) supplementary zinc, copper, and phosphorus. Group B had mycorrhizal inoculation in combination with 9) no supplementary fertilization, 10) supplementary zinc application, 11) supplementary copper 12) supplementary phosphorus 13) supplementary zinc and copper, 14) supplementary zinc and phosphorus, 15) supplementary copper and phosphorus, 16) supplementary zinc, copper, and phosphorus. There was also a pilot study into the pH range most suitable for the cultivation of A. afra in a hydroponic system, which was used to refine the mycorrhizal investigation, as pH has influences with regards to nutrient uptake of plants.
124

Micro analytical observation of elemental distribution in arbuscular mycorrhizal (AM) roots from mining sites in South Africa and identification of their AM fungi

Zamxaka, Mtutuzeli January 2016 (has links)
A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy. Johannesburg, 2016. / South Africa, as one of the leaders in mining industry, due to the variety and quantity of minerals produced, has been and is still producing a number of mine tailings which are contaminated by heavy metals. Heavy metals are very harmful to plants and especially to human beings and animals due to their non-biodegradable nature. The problem of environmental metal pollution could be combated by the establishment of Arbuscular Mycorrhiza (AM) vegetation on the surface of mine tailings. Besides the toxicity of the substrate, such areas usually lack essential nutrients (mainly N, P, and K) and organic matter. AM fungi contribute to soil structure by forming micro- and macro- soil aggregates within the net of external hyphae. Their presence may reduce stress caused by lack of nutrients or organic matter and increase plant resistance to pathogens, drought and heavy metals. Therefore, mycorrhizal fungi may become the key factor in successful plant revegetation of heavy-metal-polluted areas by promoting the success of plant establishment and increasing soil fertility and quality. The aim of this project was to identify AM fungi from a number of heavy metal sites in South Africa using both morphological and molecular techniques, followed by the evaluation of heavy metal distribution and localisation in mycorrhizal roots. Soil samples were collected from three different provinces, namely: Gauteng, Mpumalanga and North West provinces. The sites were selected based on their historical and current heavy metal contamination. Indigenous AM fungal isolates (which are adapted to local soil conditions) can stimulate plant growth better than non-indigenous isolates. AM fungal spores were isolated from 100g of representative soil sample by the wet sieving and decanting method, followed by assessment of spore numbers and infective propagules. The spores of a subset of the pot samples were mounted on microscope slides in polyvinyl lactic acid glycerol and identified by morphological characteristics to the level of genus or species. Most of the spores counted were observed in a 45 μm sieve. These spores were tiny and had different sizes, colours and shapes. The majority of the observed spores were small, brown and oval in shape. For morphological identification, plant roots were stained and hyphae were found to be the most abundant in roots. For molecular identification, two sets of nested PCR primers, namely NS1 & NS4 coupled with AML1 & AML2, were employed in this study due to their ability to amplify all subgroups of arbuscular mycorrhizal fungi (AM fungal, Glomeromycota), while excluding sequences from other organisms. Through both morphological characteristics and molecular identification, the following fungal genera were identified for the first time in the studied sites in South Africa. The study identified a total of 14 AM fungal genera and 55 AM fungal species, which are: Glomus (15), Acaulospora (11), Scutellospora (6), Gigaspora (6), Rhizophagus (3), Funneliformis (3), Archaeospora (2), Claroideoglomus (2), Ambispora (2), Sclerocystis (1), Fuscutata (1), Entrophospora (1), Diversispora (1), Paraglomus (1). Both Glomus and Acualospora have been observed to be the highest occurring genera in the analysed soil samples, followed by Scutellospora and Gigaspora and others mentioned. PIXE technique was successful in localising elemental concentration in both plant roots and AM fungal structures, as well as in indicating the large vesicles in root tissue. AM fungal structures in the outer cortex or outer epidermal layer of the root cross-sections were observable, as shown by the more significantly enriched Si in the vesicles and arbuscules. Distinctive elemental maps can be used to localise sites of colonisation and verification of the symbiotic nature of the tissue. This indicates that a range of metals can be sequestered in AM fungal structures above levels in surrounding host root tissue, and demonstrates the potential of Micro-PIXE to determine metal accumulation and elemental distribution in mycorrhizal plant roots and inter-and intracellular AM fungal structures. This research highlights the potential of AM fungi for inoculation of plants as a prerequisite for successful restoration of heavy metal contaminated soils. It also illustrates the importance of AM fungal diversity in selected high heavy metal (HM) sites in RSA, particularly in the North West and the Gauteng gold mining slime dams. Therefore, phytoremediation of mine tailings by mycorrhizal plants seems to be one of the most promising lines of research on mine tailings contamination by heavy metals. The strategies which evolved during this project have great potential for phytoremediation of toxic mining sites, and thus can help mitigate the environmental problems, especially in the mining waste sites. / LG2017
125

Effect of water stress and arbuscular mycorrhiza on the plant growth and antioxidant potential of Pelargonium reniforme Curtis and Pelargonium sidoides DC

Ingarfield, Patricia Jean January 2018 (has links)
Thesis (MTech (Horticulture))--Cape Peninsula University of Technology, 2018. / Pelargoniums have been studied extensively for their medicinal properties. P. reniforme and P. sidoides in particular are proven to possess antimicrobial, antifungal and antibiotic abilities due to their high antioxidant potential from compounds isolated from their tuberous roots. These plants have now been added to the medicine trade market and this is now causing concern for conservationists and they are generally harvested from the wild populations. This study evaluated the effect of water stress alone and in conjunction with arbuscular mycorrhiza on two species of Pelargoniums grown in a soilless medium. The experiment consisted of five different watering regimes which were applied to one hundred plants of each species without inoculation with arbuscular mycorrhiza and to one hundred plants of each species in conjunction with inoculation with AM. All the plants in the experiment were fed with a half-strength, standard Hoagland nutrient solution at varying rates viz. once daily to pot capacity, every three days to pot capacity, every six days to pot capacity, every twelve days to pot capacity and every twenty-four days to pot capacity. The objectives of the study were to measure the nutrient uptake, SPAD-502 levels (chlorophyll production) and metabolite (phenolics) formation of both species, grown under various rates of irrigation and water stress, as well with or without the addition of arbuscular mycorrhiza at planting out. Each treatment consisted of 10 replicates. SPAD-502 levels were measured weekly using a hand held SPAD-502 meter. Determination of nutrient uptake of macronutrients N, K, P, Ca, Mg and Na and micronutrients Cu, Zn, Mn, Al and B were measured from dry plant material at the end of the experiment by Bemlab, 16 Van Der Berg Crescent, Gants Centre, Strand. Plant growth in terms of wet and dry shoot and root weight were measured after harvest. Determination of concentrations of secondary metabolites (phenolic compounds) were assayed and measured spectrophotometrically at the end of the experiment. The highest significant reading of wet shoot weight for P. reniforme was taken in treatments 1 and 2 with and without mycorrhiza i.e. WF1, WF1M, WF2 and WF2M, with the highest mean found in WF1 with no mycorrhiza. This indicates that under high irrigation AM plays no part in plant growth, possibly due to leaching. More research is necessary in this regard. With regard to wet root weight, this was found to be not significant in any of the treatments, other than the longest roots being found in WF4. Measurements for dry root weight showed that WF1,2,3 and 5 were the most significant at P≤ 0.001 significance, with the highest weight found at treatment being WF3 and WF3M. The highest mean of shoot length of the plants was measured in treatment WF2 at moderate watering, but no statistical difference was found with water application and mycorrhiza addition. Nutrient uptake was increased in P. sidoides in all the different watering levels in the experiment except in the uptake of Mg. AM inoculation showed an increase in the uptake of Ca, while absorption of N occurred at higher water availability. K uptake was enhanced by the addition of AM in high water availability and K utilisation decreased as water stress increased. Medium to low watering resulted in higher leaf content in P. sidoides while the interaction between water availability and AM inoculation increased chlorophyll production towards the end of the experiment.
126

The roles of arbuscular mycorrhizal fungi in arsenic uptake and tolerance of upland rice

Chan, Wai Fung 01 January 2011 (has links)
No description available.
127

Risk assessment and mycorrhizal remediation of cadmium contamination in vegetable farms around the Pearl River Delta, China

Hu, Junli 01 January 2013 (has links)
No description available.
128

Investigations into aspects of nod factor utilization for crop production

Supanjani January 2005 (has links)
No description available.
129

Molecular investigation of genetic diversity in ericoid mycorrhizal endophytes associated with Woollsia pungens (Cav.) F. Muell (Epacridaceae)

Liu, Guangwu, University of Western Sydney, Nepean, School of Science January 1998 (has links)
Two hundred and forty three fungal isolates were obtained from roots of four Woollsia pungens (Cav.) F. Muell plants collected from a field site in New South Wales, Australia. 175 sterile isolates were slow growing and dark-coloured on 2 percentage malt agar and were selected for further analysis. Microsatellite-primed PCR using the primers (GACA)4 and (GTG)5 separated these isolates into 50 genets. Isolates representative of 43 genets (including 168 isolates in total) formed typical ericoid mycorrhizal structures when inoculated onto roots of Vaccinium macrocarpon Ait (Ericaceae), confirming their status as mycorrhizal endophytes. It was estimated that a minimum of 43 genetically-distinct mycorrhizal mycelial genets were present in the root systems of the sampled W. pungens population with 7 to 15 distinct endophytic genets identified in each host plant, indicating that considerable genetic diversity exists within the endophyte population. While most genets were represented by less than 8 isolates, 3 genets contained up to 41 isolates, suggesting that root system colonisation by some mycelia may be extensive. While most fungal genets were shown to be confined to individual plants, 2 genets (genets 32 and 33), however, were present within the root systems of 2 adjacent plants (plants C and D), suggesting that the two root systems were interconnected by the endophyte mycelia. The ITS region of 13 mycorrhizal endophytes and a non-mycorrhizal isolate selected from the endophyte population were sequenced and compared to the sequence of Hymenoscyphus ericae as well as sequences from the GenBank database. A phylogenetic tree was generated from the nucleotide sequence data. This analysis revealed that 6 putative taxa were present in the root systems of 4 host plants. No isolates were positively identified to genus or species level. Closest matches with fungal sequences in the database indicated that most isolates probably belonged to the order Leotiales. Cluster analysis on the basis of the ITS sequences indicated that H. ericae was not clustered together with any endophytes from W. pungens, suggesting that endophytes of W. pungens are not identical to the known ericoid mycorrhizal fungus H. ericae. H. ericae had a low degree of sequence similarity with isolates from W. pungens, with similarities ranging from 68.3-80.6%. Cluster analysis based on DNA sequences of the ITS region did not fully support the groupings inferred from microsatellite-based fingerprinting. / Master of Science (Hons)
130

Effects of Preinoculation with VAM fungi isolated from different sites on plant tolerance to salinity in soils amended with sodium chloride

Cantrell, Isabella Cardona 07 January 2000 (has links)
The hypothesis that inoculation of transplants with vesicular-arbuscular mycorrhizal (VAM) fungi before planting into saline soils would alleviate salt effects on growth and productivity was tested on lettuce (Lactuca sativa L.) and onion (Allium cepa L.). A secondary hypothesis was that the fungi isolated from a saline soil would be more effective than those from a nonsaline soil. VAM inocula from a high-and a low-salt soil were trap-cultured, their propagules quantified, adjusted, and added to a pasteurized growth medium in which seeds germinated and seedlings grew for a few weeks. These seedlings, once colonized by VAM fungi, were transplanted into saline soil. Seedlings were exposed to high concentrations of NaCl at the time of transplant; in this respect, our technique aimed to simulate conditions of high salinity prevalent in soils affected by NaCl. Preinoculated lettuce and onion transplants grown for 10 weeks had increased shoot biomass compared with nonVAM plants at all salinity (NaCl) levels tested. Leaves of VAM lettuce at the highest salt level were significantly greener than those of the nonVAM lettuce. NonVAM onions were stunted due to available P deficiency in the soil, but inoculation with VAM fungi alleviated P deficiency and salinity effects except at the highest salinity level; nevertheless, VAM onions were significantly larger at all salinity levels. Increasing the level of available P by weekly applications to nonVAM plants partially alleviated the salinity effects on onion growth. VAM fungi from the saline soil site were not more effective in ameliorating the reduction on plant growth caused by salt than those from the nonsaline site. Colonization of roots and length of soil hyphae produced by the test fungi decreased with increasing salt. Results indicate that preinoculation of transplants with VAM fungi can effectively alleviate deleterious effects of saline soils on crop productivity. / Graduation date: 2000

Page generated in 0.0628 seconds