• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 4
  • 2
  • 2
  • Tagged with
  • 20
  • 20
  • 7
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of nano-structured coatings containing aluminium, aluminium-nitride and carbon

Xiao, Xiaoling, S3060677@student.rmit.edu.au January 2008 (has links)
There is an every increasing need to develop more durable and higher performing coatings for use in a range of products including tools, devices and bio-implants. Nano-structured coatings either in the form of a nanocomposite or a multilayer is of considerable interest since they often exhibit outstanding properties. The objective of this thesis was to use advanced plasma synthesis methods to produce novel nano-structured coatings with enhanced properties. Coatings consisting of combinations of aluminum (Al), aluminum nitride (AlN) and amorphous carbon (a-C) were investigated. Cathodic vacuum arc deposition and unbalanced magnetron sputtering were used to prepare the coatings. By varying the deposition conditions such as substrate bias and temperature, coatings with a variety of microstructures were formed. A comprehensive range of analytical methods have been employed to investigate the stoichiometry and microstructure of the coatings. These include Transmission Electron Microscopy (TEM), Scanning Transmission Electron Microscopy (STEM), Electron Energy Loss Spectroscopy, Auger Electron Spectroscopy, X-ray diffraction and Raman spectroscopy. In addition to the investigation of microstructure, the physical properties of the coatings were measured. Residual stress has been recognized as an important property in the study of thin film coatings since it can greatly affect the quality of the coatings. For this reason, residual stress has been extensively studied here. Hardness measurements were performed using a nano indentation system, which is sensitive to the mechanical properties of thin films. This thesis undertook the most comprehensive investigation of the Al/AlN multilayer system. A major finding was the identification of the conditions under which layers or nanocomposite form in this system. A model was developed based on energetics and diffusion limited aggregation that is consistent with the experimental data. Multilayers of a-C and Al were also found to form nanocomposites. No hardness enhancement as a function of layer thickness or feature size was observed in either the Al/AlN or a-C/a-C systems. It was found that the most important factor which determines hardness is the intrinsic stress, with films of high compressive stress exhibiting the highest hardness. Nano-structured multilayers of alternating high and low density a-C were investigated. For a-C multilayers prepared using two levels of DC bias, evidence of ion beam induced damage was observed at the interfaces of both the low and high density layers. In addition, the structure of the high density (ta-C, known as tetrahedral amorphous carbon) layers was found to be largely unchanged by annealing. These results extend our understanding of how a-C form from energetic ion beams and confirms the thermal stability of ta-C in a multilayer. This thesis also presented the first attempt to synthesis a-C multilayered films with a continuously varying DC bias in sinusoidal pattern. The resulting films were shown to have a structurally graded interface between layers and verified that ion energy and stress are the most important factors which determine the structure of a-C films.
2

Pool boiling on nano-finned surfaces

Sriraman, Sharan Ram 15 May 2009 (has links)
The effect of nano-structured surfaces on pool boiling heat transfer is explored in this study. Experiments are conducted in a cubical test chamber containing fluoroinert coolant (PF5060, Manufacturer: 3M Co.) as the working fluid. Pool boiling experiments are conducted for saturation and subcooled conditions. Three different types of ordered nano-structured surfaces are fabricated using Step and flash imprint lithography on silicon substrates followed by Reactive Ion Etching (RIE) or Deep Reactive Ion Etching (DRIE). These nano-structures consist of a square array of cylindrical nanofins with a longitudinal pitch of 1 mm, transverse pitch of 0.9 mm and fixed (uniform) heights ranging from 15 nm – 650 nm for each substrate. The contact angle of de-ionized water on the substrates is measured before and after the boiling experiments. The contact-angle is observed to increase with the height of the nano-fins. Contact angle variation is also observed before and after the pool boiling experiments. The pool boiling curves for the nano-structured silicon surfaces are compared with that of atomically smooth single-crystal silicon (bare) surfaces. Data processing is performed to estimate the heat flux through the projected area (plan area) for the nano-patterned zone as well as the heat flux through the total nano-patterned area, which includes the surface area of the fins. Maximum heat flux (MHF) is enhanced by ~120 % for the nanofin surfaces compared to bare (smooth) surfaces, under saturation condition. The pool boiling heat flux data for the three nano-structured surfaces progressively overlap with each other in the vicinity of the MHF condition. Based on the experimental data several micro/nano-scale transport mechanisms responsible for heat flux enhancements are identified, which include: “microlayer” disruption or enhancement, enhancement of active nucleation site density, enlargement of cold spots and enhancement of contact angle which affects the vapor bubble departure frequency.
3

Pool boiling on nano-finned surfaces

Sriraman, Sharan Ram 10 October 2008 (has links)
The effect of nano-structured surfaces on pool boiling heat transfer is explored in this study. Experiments are conducted in a cubical test chamber containing fluoroinert coolant (PF5060, Manufacturer: 3M Co.) as the working fluid. Pool boiling experiments are conducted for saturation and subcooled conditions. Three different types of ordered nano-structured surfaces are fabricated using Step and flash imprint lithography on silicon substrates followed by Reactive Ion Etching (RIE) or Deep Reactive Ion Etching (DRIE). These nano-structures consist of a square array of cylindrical nanofins with a longitudinal pitch of 1 mm, transverse pitch of 0.9 mm and fixed (uniform) heights ranging from 15 nm - 650 nm for each substrate. The contact angle of de-ionized water on the substrates is measured before and after the boiling experiments. The contact-angle is observed to increase with the height of the nano-fins. Contact angle variation is also observed before and after the pool boiling experiments. The pool boiling curves for the nano-structured silicon surfaces are compared with that of atomically smooth single-crystal silicon (bare) surfaces. Data processing is performed to estimate the heat flux through the projected area (plan area) for the nano-patterned zone as well as the heat flux through the total nano-patterned area, which includes the surface area of the fins. Maximum heat flux (MHF) is enhanced by ~120 % for the nanofin surfaces compared to bare (smooth) surfaces, under saturation condition. The pool boiling heat flux data for the three nano-structured surfaces progressively overlap with each other in the vicinity of the MHF condition. Based on the experimental data several micro/nano-scale transport mechanisms responsible for heat flux enhancements are identified, which include: "microlayer" disruption or enhancement, enhancement of active nucleation site density, enlargement of cold spots and enhancement of contact angle which affects the vapor bubble departure frequency.
4

Bi-metallic Catalyst for Hydrogen Sorption of Magnesium Hydride

Zahiri-Sabzevar, Beniamin Unknown Date
No description available.
5

Quantificação de glicose intra e extra-celular por meio de biossensores micro e nanoestruturados / Intra and extra-cellular glucose quantification by micro-nano-structured biosensors

Nascimento, Raphael Aparecido Sanches 07 August 2015 (has links)
Segundo dados da Organização Mundial de Saúde, até o ano de 2030 a diabetes será a sétima enfermidade causadora de morte no mundo. A diabetes se caracteriza pela variação do nível de glicose no sangue dada ingestão de alimentos ou realização de certas tarefas. Além disso, já é sabido pela comunidade científica atual que células cancerígenas possuem metabolismo diferente quando comparadas a células normais, consumindo uma maior quantidade de açúcar devido a essa anormalidade. No presente trabalho serão apresentados, basicamente, dois tipos de biossensores que possuem grande potencial para tornarem-se monitores contínuos de glicose. Ambos os biossensores utilizam a enzima glicose oxidase como catalisador específico da reação de oxidação do carboidrato. O primeiro apresenta estrutura em escala micrométrica, tem por objetivo a quantificação de glicose em solução em ambiente extracelular e se baseia no sistema EGFET (Extended Gate Field Effect Transistor) com substrato de Fluorine Tin Oxide (FTO). Além do mais, foram utilizados dois protocolos de imobilização da glicose oxidase: quitosana (com uma janela de detecção de 1 a 5mM de glicose) e glutaraldeído (com janela de detecção de 0 a 15 mM de glicose). O segundo apresenta estrutura em escala nanométrica, tem por objetivo a quantificação de glicose em ambiente intracelular e baseia-se no sistema de nanopipetas de quartzo. Com esse dispositivo foi possível estipular a concentração de glicose livre dentro de três linhas de células distintas: Fibroblastos humanos entre 0 e 2.8mM; MCF-7 maior que 4.7 mM; MDA-MB-231entre 3.6 e 4.5 mM. / According to the World Health Organization, until 2030 diabetes will be the 7th cause of death worldwide. This disease is characterized by variation on blood glucose levels due to ingestion of specific food and tasks performing. Moreover, it is already known that cancer cells have a different metabolism when compared to normal cells and these abnormal cells have a higher sugar intake due to this abnormality. This work will present, basically, two types of biosensors with great potential to become continuous glucose monitors. Both biosensors use the enzyme glucose oxidase as carbohydrate oxidation catalyzer. The first one presents a micro-metric structure and its goal is to quantify glucose concentration in an extracellular solution. This device is based in EGFET (Extended Gate Field Effect Transistor) system and uses FTO as substrate. Furthermore, two immobilization protocols were used to fix the enzyme to the FTO: chitosan (with final range of 1~5mM of glucose) and glutaraldehyde (with final range of 0~15mM of glucose). The second is a nano-structured biosensor based on nanopipette system and its goal is to quantify intracellular glucose concentration. With this device was possible to stipulate free glucose molecules inside different cell lines: between 0 and 2.8mM for human Fibroblasts; greater than 4.7 mM for MCF-7; and between 3.6 and 4.5 mM for MDA-MB-231.
6

Droplet Impingement Cooling Experiments on Nano-structured Surfaces

Lin, Yen-Po 2010 August 1900 (has links)
Spray cooling has proven to be efficient in managing thermal load in high power applications. Reliability of electronic products relies on the thermal management and understanding of heat transfer mechanisms including those related to spray cooling. However, to date, several of the key heat transfer mechanisms are still not well understood. An alternative approach for improving the heat transfer performance is to change the film dynamics through surface modification. The main goal of this study is to understand the effects of nano-scale features on flat heater surfaces subjected to spray cooling and to determine the major factors in droplet impingement cooling to estimate their effects in the spray cooling system. Single droplet stream and simultaneous triple droplet stream with two different stream spacings (500 μm and 2000 μm), experiments have been performed to understand the droplet-surface interactions relevant to spray cooling systems. Experiments have been conducted on nano-structured surfaces as well as on flat (smooth) surfaces. It is observed that nano-structured surfaces result in lower minimum wall temperatures, better heat transfer performance, and more uniform temperature distribution. A new variable, effective thermal diameter (de), was defined based on the radial temperature profiles inside the impact zone to quantify the effects of the nano-structured surface in droplet cooling. Results indicate that larger effective cooling area can be achieved using nano-structured surface in the single droplet stream experiments. In triple stream experiments, nano-structured surface also showed an enhanced heat transfer. In single stream experiments, larger outer ring structures (i.e. larger outer diameters) in the impact crater were observed on the nano-structured surfaces which can be used to explain enhanced heat transfer performance. Smaller stream spacing in triple stream experiments reveal that the outer ring structure is disrupted resulting in lower heat transfer. Lower static contact angle on the nano-structured surface has been observed, which implies that changes in surface properties result in enhanced film dynamics and better heat transfer behavior. The results and conclusions of this study should be useful for understanding the physics of spray cooling and in the design of better spray cooling systems.
7

Active Nano-Structured Composite Coatings for Corrosion and Wear Protection of Steel

Kim, Yoo Sung 16 December 2013 (has links)
In order to obtain sustainable engineering systems, this research investigates surface and interface properties of metals and active nanostructured coatings. The goal is to develop new approaches in order to improve the corrosion resistance and obtain knowledge in reconstruction of worn and/or corroded surfaces. The research will focus on high carbon steels as the substrate. These materials are used in most of industries and vehicles like aircrafts and automobiles. For anti-corrosion and self-healing applications, the layer-by-layered (LBL) coatings consisting photo-catalytic materials, the corrosion inhibitor, and the polyelectrolyte will be studied. Potential dynamic tests will be carried out in order to characterize the corrosion potential and current. For wear study, we will develop a metallic composite that has several functions, such as corrosion and wear protection, refresh or reverse worn or corroded surface. Characterization techniques used include optical microscope, surface interferometer, tribometer and the hardness tester. The ultimate goal of this research is to understand several types of problems on metal surface, such as corrosion and wear, and explore the possible ways to reduce those by using active nano-structured composite coating on metal surface.
8

Fabrication and Characterization of CIS/CdS and Cu2S/CdS Devices for Applications in Nano Structured Solar Cells

Jayaraman, Visweswaran 01 January 2005 (has links)
Nano structured solar cells provide an opportunity for increased open circuit voltages and and short circuit currents in solar cells due to quantum confinement of the window and absorber materials and an increase in the optical path length for the incident light. In this study, both bulk and nano heterojunctions of CIS/CdS and Cu2S/CdS devices have been fabricated and studied on plain glass substrates and inside porous alumina templates to compare their performance. The devices have also been characterized SEM, XRD and JV measurements. The J-V curves have also been analyzed for series resistance, diode ideality factor and reverse saturation current density.
9

Functionalized Nano-structured Silicas for Trace Collection from Natural Waters

Nell, Kara 21 November 2016 (has links)
Throughout this body of work, three classes of sorbent materials were created and optimized, each designed to selectively capture organics or desired metals from natural water sources. These target species included toxic heavy metals, uranium, rare earths, and simple organics, such as benzene. Each class of sorbent materials is functionalized nanostructured silicas, created by the development of several functionalization methods: utilizing thiol-ene click chemistry, aromatic interactions, and the formation of inclusion complexes. Thiol-ene click surface modification gave rise to sorbent materials with impressive affinities for both soft metals, such as gold, and harder metals, such as uranium and rare earth elements. Applications of these materials for aqueous mining of uranium and rare earth elements from various natural water sources are presented. Two classes of materials based on supramolecular functionalization methods were prepared. In the first class, aromatic interactions allowed for surface functionalization with thiol containing aryl ligands. These materials proved to have an excellent affinity for heavy metals from natural waters, and hold promise for regenerable nanostructured silica sorbents. The second class of materials utilizes the ability of β-cyclodextins to form inclusion complexes with small molecule organics, such as benzene. The formation of inclusion complexes drove both surface functionalization and the capture of small molecule organics from aqueous solutions. This work serves to inspire the development of novel functionalized nanostructured sorbents for trace collection of toxic organics from aqueous streams. These supramolecular methods for surface medication can be expanded to nanomaterials at large. This dissertation includes both previously published/unpublished and co-authored material. / 10000-01-01
10

Quantificação de glicose intra e extra-celular por meio de biossensores micro e nanoestruturados / Intra and extra-cellular glucose quantification by micro-nano-structured biosensors

Raphael Aparecido Sanches Nascimento 07 August 2015 (has links)
Segundo dados da Organização Mundial de Saúde, até o ano de 2030 a diabetes será a sétima enfermidade causadora de morte no mundo. A diabetes se caracteriza pela variação do nível de glicose no sangue dada ingestão de alimentos ou realização de certas tarefas. Além disso, já é sabido pela comunidade científica atual que células cancerígenas possuem metabolismo diferente quando comparadas a células normais, consumindo uma maior quantidade de açúcar devido a essa anormalidade. No presente trabalho serão apresentados, basicamente, dois tipos de biossensores que possuem grande potencial para tornarem-se monitores contínuos de glicose. Ambos os biossensores utilizam a enzima glicose oxidase como catalisador específico da reação de oxidação do carboidrato. O primeiro apresenta estrutura em escala micrométrica, tem por objetivo a quantificação de glicose em solução em ambiente extracelular e se baseia no sistema EGFET (Extended Gate Field Effect Transistor) com substrato de Fluorine Tin Oxide (FTO). Além do mais, foram utilizados dois protocolos de imobilização da glicose oxidase: quitosana (com uma janela de detecção de 1 a 5mM de glicose) e glutaraldeído (com janela de detecção de 0 a 15 mM de glicose). O segundo apresenta estrutura em escala nanométrica, tem por objetivo a quantificação de glicose em ambiente intracelular e baseia-se no sistema de nanopipetas de quartzo. Com esse dispositivo foi possível estipular a concentração de glicose livre dentro de três linhas de células distintas: Fibroblastos humanos entre 0 e 2.8mM; MCF-7 maior que 4.7 mM; MDA-MB-231entre 3.6 e 4.5 mM. / According to the World Health Organization, until 2030 diabetes will be the 7th cause of death worldwide. This disease is characterized by variation on blood glucose levels due to ingestion of specific food and tasks performing. Moreover, it is already known that cancer cells have a different metabolism when compared to normal cells and these abnormal cells have a higher sugar intake due to this abnormality. This work will present, basically, two types of biosensors with great potential to become continuous glucose monitors. Both biosensors use the enzyme glucose oxidase as carbohydrate oxidation catalyzer. The first one presents a micro-metric structure and its goal is to quantify glucose concentration in an extracellular solution. This device is based in EGFET (Extended Gate Field Effect Transistor) system and uses FTO as substrate. Furthermore, two immobilization protocols were used to fix the enzyme to the FTO: chitosan (with final range of 1~5mM of glucose) and glutaraldehyde (with final range of 0~15mM of glucose). The second is a nano-structured biosensor based on nanopipette system and its goal is to quantify intracellular glucose concentration. With this device was possible to stipulate free glucose molecules inside different cell lines: between 0 and 2.8mM for human Fibroblasts; greater than 4.7 mM for MCF-7; and between 3.6 and 4.5 mM for MDA-MB-231.

Page generated in 0.0598 seconds