• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 2
  • Tagged with
  • 11
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis and catalytic study of shell-shell, core-shell hollow gold nanocatalysts

Garlyyev, Batyr 27 May 2016 (has links)
Metal nanoparticles have a large surface area to volume ratio compared to their bulk counterparts, which makes them attractive to use as catalysts. Atoms on the surface of metal nanoparticles are very active due to their high surface energy resulting from their unsatisfied valency. First synthesis of gold nanoparticles with different shapes and bimetallic structure are explored in detail. Then an experimental method which could distinguish between the two mechanisms (homogeneous or heterogeneous) by using hollow plasmonic gold nanocatalyst is developed. Furthermore the catalytic activity of gold nanocages was changed by adding an inner platinum or palladium nanoshell. Results suggested that adding palladium inner shell increased the activity of gold nanocages towards the reduction nitro groups to amino groups. Controlling the selectivity of the catalyst is an important goal of catalysis research. Lastly selectivity of the plasmonic nanocatalyst (Gold sphere-Gold shell Nanorattles) with multiple plasmon modes was studied for photo-dimerization of nitro groups into azo dimers were studied on gold nanocatalyst surface. Results showed that selectivity can be controlled by changing the wavelength of the light exciting surface plasmon.
2

Graphene as a Solid-state Ligand for Palladium Catalyzed Cross-coupling Reactions

Yang, Yuan 01 January 2018 (has links)
Palladium-catalyzed carbon-carbon cross-coupling reactions have emerged a broadly useful, selective and widely applicable method to synthesize pharmaceutical active ingredients. As currently practiced in the pharmaceutical industry, homogeneous Pd catalysts are typically used in cross-coupling reactions. The rational development of heterogeneous catalysts for cross-coupling reactions is critical for overcoming the major drawbacks of homogeneous catalysis including difficulties in the separation, purification, and quality control process in drug production. In order to apply heterogeneous catalysis to flow reactors that may overcome this limitation, the catalyst must be strongly bound to a support, highly stable with respect to leaching, and highly active. While the primary role of supports in catalysis has been to anchor metal particles to prevent sintering and leaching, supports can also activate catalytic processes. In this study, by using a xi combined theoretical and experimental method, we probed the effect of graphene as support in the complex reaction cycle of Suzuki reactions. The density functional theory study provides a fundamental understanding of how a graphene support strongly binds the Pd nanoparticles and act as both an efficient charge donor and acceptor in oxidation and reduction reaction steps. Theoretical investigations prove that the Pd-graphene interaction promotes electron flow between the metal cluster and the defected graphene to reduce reaction barrier. The ability for graphene to both accept and donate charge makes graphene an unusually suitable support for multi-step catalytic processes that involve both oxidation and reduction steps. The computer-aided catalyst design with the atomic precise accuracy demonstrates the Pd/graphene catalyst can be further optimized and the first-row transition metal nanoparticles have great potential to replace Pd to catalyze the Suzuki reaction. The corresponding experimental study shows that the method to immobilize the Pd nanoparticles on the graphene is crucial to increasing the reactivity and stability of the resulted catalyst. A comparison of the activation energy and turn over frequency for a series of supported and homogeneous catalysts indicates that exposing palladium-graphene to defect inducing microwave radiation results in dramatically lower activation energies and higher turnover frequencies. Furthermore, the heterogeneity tests demonstrate the Suzuki reactions are carried out on the surface of the immobilized Pd nanoparticle agreeing with the theoretical results. A method to engineer the 2-D graphene support to a 3-D structure to minimize the re-stacking and agglomeration of the graphene lattice will also be introduced in this study.
3

EXPANDING APPLICATIONS OF IRON OXIDE NANOPARTICLES BY SURFACE FUCNTIONALIZATION: FROM MAGNETIC RESONANCE IMAGING TO NANO-CATALYSIS

Duanmu, Chuansong 01 December 2009 (has links)
In this dissertation, research efforts mainly focused on exploring the applications of superparamagnetic iron oxide nanoparticles (SPIONs) in MR imaging and nanocatalysis via surface functionalization. A dopamine-based surface-functionalization strategy was established. The Simanek dendrons (G1 to G3), oligonucleotides and amino acids were loaded onto SPION surfaces via this approach to develop pH-sensitive MRI contrast agents, specific-DNA MR probes and a biomimetic hydrolysis catalyst. Dendron-SPION conjugates (G1 to G3) have good aqueous solubilities and high transverse relaxivities (>300 s-1*mM-1). They also showed interesting strong pH-sensitive R2 and R2* relaxivities, which were governed by the clustering states of dendron-SPIONs in different pH environments. Values of R2m and R2* m/R2m varied by over an order of magnitude around pH 5. The efficient cell-uptake (~3 million/cell) and low cytotoxicity of G1 to G3-SPIONs were demonstrated on HeLa cell cultures. The strong R2* effects were observed indicating the SPION clustering in HeLa cells. Two SPION-oligonuleotide conjugates were synthesized by coupling two half-match oligonucleotides onto domapine-capped SPIONs via SPDP linkers. They served as MR probes to detect a single-strand DNA with the same sequence to miRNA-21 based on the change of R2 values due to the DNA-bridged SPION clustering. The detection limit of the DNA could reach to 16.5 nM. A biomimetic hydrolysis nanocatalyst (i.e., Fe2O3-Asp-His complex) was developed by loading Asp and His-dopamine derivatives onto SPIONs. Paraoxon and nitrophenyl acetate were hydrolyzed under a mild condition (neutral pH, 37 °C) catalyzed by the Fe2O3-Asp-His complex. The two amino acids Asp and His cooperated with each other on the SPION surfaces to catalyze hydrolysis reactions. This catalyst could be recycled by a magnet and reused for four times without a significant loss of catalytic activity.
4

Materials For Hydrogen Generation, Storage, And Catalysis

Kalidindi, Suresh Babu 01 1900 (has links) (PDF)
Hydrogen, nature’s simple and the most abundant element has been in the limelight for the past few decades from the stand point of the so-called hydrogen economy. With a high calorific value (142 MJ/kg) that is three times as large as the liquid hydrocarbons, hydrogen has emerged as a promising and environmentally friendly source of energy for the future generations. However, on-board hydrogen storage is one of the bottlenecks for its widespread usage for mobile applications. Storing hydrogen in liquid or compressed form is extremely difficult because of its low density. One of the best alternatives is to store hydrogen in a chemical form. Despite extensive work in this area, none of the materials seem to satisfy the essential criteria of reversible hydrogen storage with high gravimetric content. With regard to chemical hydrogen storage, apart from metal hydrides, ammonia borane (H3N•BH3, AB) is a promising prospect with a very high gravimetric storage of 19.6 wt% of hydrogen. Objectives 1) Develop cost-effective and active first-row transition metal based catalysts for the generation of hydrogen from AB in protic solvents 2) Study the dehydrogenation of AB in fluorinated alcohols and acids in order to realize compounds that are suitable for regeneration. 3) Study the interaction of Cu2+ with AB in non-aqueous medium using 11B NMR spectroscopy and powder XRD techniques. 4) Generation of highly pure hydrogen from ammonia borane in the solid state under mild conditions in the presence of late first row transition metal salts. 5) Synthesis of highly monodisperse ultrasmall colloidal Mg nanoparticles using the Solvated Metal Atom Dispersion (SMAD) method and digestive ripening technique; study the effect of size on the desorption temperature of MgH2. 6) Synthesize Cu/ZnO and Cu/MgO nanocomposites from the individual metal nanoparticles using co-digestive ripening technique and establish the structure of the composites using TEM, EF-TEM, and powder XRD techniques. Significant results Hydrogen generation from AB in protic solvents was realized using first-row transition metal catalysts. Initial studies were carried out using Cu nanocatalyst synthesized by the solvated metal atom dispersion method (SMAD). The activity order was found to be Cu2O > Cu@Cu2O > Cu. In addition, the late first-row transition metal ions, Co2+, Ni2+, and Cu2+ ions were also found to be highly active towards AB hydrolysis. These ions assisted AB hydrolysis via in-situ formation of metal atoms/clusters. Cu2+ assisted the hydrolysis of AB via the in-situ generation of both H+ and Cu clusters. At higher concentrations of AB, hydrolysis resulted in the evolution of NH3 in addition to H2 whereas, methanolysis afforded pure H2. In the case of methanolysis, for catalyst/AB = 0.2, three equiv of H2 were liberated in 2.5, 4.2, and 1.5 min when Co-Co2B, Ni-Ni3B, and Co-Ni-B nanopowders were used as catalysts, respectively. Dehydrogenation of ammonia borane (AB) was carried out in 2,2,2-trifluoroethanol and trifluoroacetic acid in order to realize compounds that are suitable for regeneration. The final byproduct obtained after the catalytic dehydrogenation of AB in 2,2,2-trifluoroethanol was NH4+B(OCH2CF3)4–. The FTIR data showed that the B-O bond in NH4+B(OCH2CF3)4 is slightly weaker compared to that in boric acid. Dehydrogenation of AB in trifluoroacetic acid in a controlled manner resulted in the formation of [CF3COO]–[BH2NH3]+ as the final by-product. Ammonia-borane was regenerated from [CF3COO]–[BH2NH3]+ by its reaction with LiAlH4, which served as the hydride source. Dehydrogenation of AB in non-aqueous medium and in the solid state were studied in hydrogen storage point of view. Cu2+ was found to activate the B–H bond in amine boranes in non-aqueous medium even at room temperature. As a result of the B–H bond cleavage in AB, [H3N•BH2]Cl species is formed. This compound reacts with unreacted AB via 3 separate pathways one involving hydrogen evolution, a second involving formation of a stable diammoniate of diborane cation [(NH3)2BH2]Cl without hydrogen evolution, and the third involving the formation of [H2NBH2]n and BNHx polymers accompanied by the generation of H2. Mechanisms of these pathways have been elaborated using 11B NMR spectroscopy and powder X-ray diffraction methods. These studies demonstrate that Cu(II) salts can be used as effective initiators for the dehydrogenation of amine boranes. Copper-induced hydrogen generation from AB in the solid state was also studied: for Cu2+/AB = 0.05, two equiv of H2 were liberated in 6.5 h at 333 K, which is equal to 9 wt% of the system. The 11B MAS NMR studies showed that the reaction proceeds through the intermediacy of [NH4]+[BCl4]– which eliminates the formation of borazine impurity, thereby affording pure H2. The cost effectiveness of CuCl2 makes this reaction scheme extremely attractive for real time applications. In the context of hydrogen storage in metal hydrides, highly monodisperse colloidal Mg nanoparticles with a size regime of 2–4 nm were synthesized by using the SMAD method followed by digestive ripening technique. The Mg-HDA nanopowder was fully hydrided at 33 bar and 391 K. Onset of hydrogen desorption from MgH2 nanoparticles was observed at a remarkably low temperature, 388 K compared to > 623 K in the case of bulk MgH2. The present study is a step towards realizing hydrogen storage materials that could operate close to ambient conditions. Colloids of Cu and Zn nanoparticles stabilized by 2-butanone have been prepared by the SMAD method. The as-prepared colloids which are polydisperse in nature have been transformed into highly monodisperse colloids by the digestive ripening process in the presence of hexadecylamine. Using this process, copper nanoparticles of 2.1 ± 0.3 nm and zinc nanoparticles of 3.91 ± 0.3 nm diameters have been obtained. Co-digestive ripening of Cu, Zn and Cu, Mg colloids resulted in the formation of Cu/ZnO and Cu/MgO nanocomposites, respectively. The structures of these nanocomposites were established using UV-visible spectroscopy, TEM, EF-TEM, and powder XRD techniques.
5

Catalisadores nanoparticulados de níquel e níquel-paládio obtidos a partir de precursores organometálicos / Nickel and nickel-palladium supported nanocatalysts obtained from organometallic precursors

Costa, Natália de Jesus da Silva 31 August 2012 (has links)
A catálise é a chave para o desenvolvimento de processos químicos sustentáveis e, portanto, o preparo de catalisadores que sejam mais ativos e seletivos é sempre uma questão atual. Utilizando as propriedades diferenciadas de nanopartículas metálicas e as vantagens de separação e estabilidade de um catalisador heterogêneo, este trabalho descreve novos catalisadores de níquel e de níquel-paládio em escala nanométrica, suportados em sólidos magnéticos, para hidrogenação de olefinas. Os catalisadores de níquel apresentados neste trabalho foram preparados pela metodologia de decomposição do precursor organometálico Ni(COD)2 (COD = ciclo-octadieno), que apresenta o metal em estado de oxidação zero e permite a formação de nanopartículas metálicas após a hidrogenação das ligações C=C do ligante. O catalisador de níquel aprimorado, composto por nanoagregados de níquel, apresentou atividade superior a qualquer outro reportado na literatura para o mesmo tipo de reação. Além disso, mesmo com a facilidade de oxidação do Ni(0), este novo catalisador teve apenas sua superfície oxidada a NiO ao ser armazenado em ar. O NiO formado foi facilmente reduzido por hidrogênio a Ni(0) em condições brandas (75°C) se comparado ao NiO bulk (270-520°C). Os catalisadores bimetálicos de níquel-paládio foram sintetizados por uma reação de substituição galvânica com Pd(OAc)2 em um catalisador de Ni(0) suportado e por decomposição simultânea dos precursores organometálicos Ni(COD)2 e Pd2(dba)3 (dba = dibenzilideno acetona) em diferentes frações molares. Os catalisadores bimetálicos preparados por substituição galvânica não resultaram em estruturas core(Ni)-shell(Pd) como o esperado, mas sim em nanopartículas de paládio depositadas sobre os nanoagregados de níquel. Os catalisadores preparados por decomposição simultânea dos complexos organometálicos, seja pela decomposição direta dos precursores sobre o suporte magnético ou pela impregnação de nanopartículas coloidais previamente formadas, resultaram tanto em nanoligas quanto em nanopartículas com segregação de níquel na superfície de acordo com as proporções empregadas dos dois metais. Todos os métodos explorados possibilitaram a obtenção de catalisadores bimetálicos ativos na hidrogenação do cicloexeno, sendo que o catalisador composto por 1,3% em massa de Ni e 0,017% em massa de Pd, obtido por uma reação de substituição galvânica, foi o catalisador que atingiu a maior atividade na reação de hidrogenação do cicloexeno. O uso de precursores organometálicos para a síntese de nanopartículas suportadas de níquel e níquel-paládio se mostrou um método eficiente para a obtenção de catalisadores com atividade diferenciada. A separação magnética, método empregado para a separação e recuperação dos catalisadores de níquel, permitiu o fácil manuseio e evitou a exposição ao ar e oxidação dos catalisadores, prolongando sua vida útil. / Catalysis is the key for the development of sustainable chemical processes, and consequently, the preparation of active and selective catalysts is always a current issue. Using the unique properties of metal nanoparticles and the advantages of separation and stability of heterogeneous catalysts, this Thesis describes new nanometric nickel and nickel-palladium catalysts, supported on magnetic solids, for hydrogenation of olefins. The nickel catalysts described in this Thesis were synthesized by the decomposition of the organometallic precursor Ni(COD)2 (COD = 1,5-cyclooctadiene), which contains zerovalent nickel, and allows the formation of metal nanoparticles after the hydrogenation of the C=C bonds of the ligand. The optimized nickel catalyst, composed by nickel nanoaggregates, showed superior activity when compared to any other catalyst reported in the literature for the same kind of reaction. Even with the propensity of oxidation of Ni(0), this new catalyst had only the surface oxidized when exposed to air. The fine NiO shell formed was easily reduced to Ni(0) with hydrogen under mild conditions (75°C) when compared to NiO bulk (270-520 °C). The bimetallic nickel-palladium catalysts were synthesized by the galvanic replacement reaction of Pd(OAc)2 and a supported Ni(0) catalyst and by the simultaneous decomposition of the organometallic precursors Ni(COD)2 and Pd2(dba)3 (dba = dibenzylidene acetone) in different molar ratios. The bimetallic catalysts obtained by the galvanic replacement reaction were not formed by core(Ni)-shell(Pd) structures as expected, but they were formed by palladium nanoparticles deposited over the nickel nanoaggregates. The catalysts obtained by simultaneous decomposition of the organometallic complexes, either by the decomposition of the precursors directly over the support or by the impregnation of pre-synthesized nanoparticles, resulted in both nanoalloys and nanoparticles with nickel segregation on the surface, depending of the ratio between the two metals. All methods of preparation of the bimetallic catalysts explored in this study allowed the formation of very active catalysts. On top of that is the catalyst with 1,3 wt% of Ni and 0,017 wt% of Pd, obtained by the galvanic replacement reaction, which achieved the highest activity in the hydrogenation of cyclohexene. The organometallic approach for the synthesis of supported nickel and nickel-palladium nanoparticles is an efficient method to obtain catalysts with outstanding activities. The magnetic separation method employed for separation and recovery of the catalysts containing nickel allows the easy handling and prevents exposure to air and undesirable oxidation of catalysts, extending their lifetimes.
6

Shape-Dependent Nanocatalysis and the Effect of Catalysis on the Shape and Size of Colloidal Metal Nanoparticles

Narayanan, Radha 30 March 2005 (has links)
From catalytic studies in surface science, it has been shown that the catalytic activity is dependent on the type of metal facet used. Nanocrystals of different shapes have different facets. This raises the possibility that the use of metal nanoparticles of different shapes could catalyze different reactions with different efficiencies. The catalytic activity is found to correlate with the fraction of surface atoms located on the corners and edges of the tetrahedral, cubic, and spherical platinum nanoparticles. It is observed that for nanoparticles of comparable size, the tetrahedral nanoparticles have the highest fraction of surface atoms located on the corners and edges and also have the lowest activation energy, making them the most catalytically active. Nanoparticles have a high surface-to-volume ratio, which makes them attractive to use compared to bulk catalytic materials. However, their surface atoms are also very active due to their high surface energy. As a result, it is possible that the surface atoms are so active that their size and shape could change during the course of their catalytic function. It is found that dissolution of corner and edge atoms occurs for both the tetrahedral and cubic platinum nanoparticles during the full course of the mild electron transfer reaction and that there is a corresponding change in the activation energy in which both kinds of nanoparticles strive to behave like spherical nanoparticles. When spherical palladium nanoparticles are used as catalysts for the Suzuki reaction, it is found that the nanoparticles grow larger after the first cycle of the reaction due to the Ostwald ripening process since it is a relatively harsh reaction due to the need to reflux the reaction mixture for 12 hours at 100 oC. When the tetrahedral Pt nanoparticles are used to catalyze this reaction, the tetrahedral nanoparticles transform to spherical ones, which grow larger during the second cycle. In addition, studies on the effect of the individual reactant have also provided clues to the surface catalytic process that is taking place. In the case of the electron transfer reaction, the surface catalytic process involves the thiosulfate ions binding to the nanoparticle surface and reacting with the hexacyanoferrate (III) ions in solution. In the case of the Suzuki reaction, the surface catalytic mechanism of the Suzuki reaction involves the phenylboronic acid binding to the nanoparticle surface and reacting with iodobenzene via collisional processes.
7

Catalisadores nanoparticulados de níquel e níquel-paládio obtidos a partir de precursores organometálicos / Nickel and nickel-palladium supported nanocatalysts obtained from organometallic precursors

Natália de Jesus da Silva Costa 31 August 2012 (has links)
A catálise é a chave para o desenvolvimento de processos químicos sustentáveis e, portanto, o preparo de catalisadores que sejam mais ativos e seletivos é sempre uma questão atual. Utilizando as propriedades diferenciadas de nanopartículas metálicas e as vantagens de separação e estabilidade de um catalisador heterogêneo, este trabalho descreve novos catalisadores de níquel e de níquel-paládio em escala nanométrica, suportados em sólidos magnéticos, para hidrogenação de olefinas. Os catalisadores de níquel apresentados neste trabalho foram preparados pela metodologia de decomposição do precursor organometálico Ni(COD)2 (COD = ciclo-octadieno), que apresenta o metal em estado de oxidação zero e permite a formação de nanopartículas metálicas após a hidrogenação das ligações C=C do ligante. O catalisador de níquel aprimorado, composto por nanoagregados de níquel, apresentou atividade superior a qualquer outro reportado na literatura para o mesmo tipo de reação. Além disso, mesmo com a facilidade de oxidação do Ni(0), este novo catalisador teve apenas sua superfície oxidada a NiO ao ser armazenado em ar. O NiO formado foi facilmente reduzido por hidrogênio a Ni(0) em condições brandas (75°C) se comparado ao NiO bulk (270-520°C). Os catalisadores bimetálicos de níquel-paládio foram sintetizados por uma reação de substituição galvânica com Pd(OAc)2 em um catalisador de Ni(0) suportado e por decomposição simultânea dos precursores organometálicos Ni(COD)2 e Pd2(dba)3 (dba = dibenzilideno acetona) em diferentes frações molares. Os catalisadores bimetálicos preparados por substituição galvânica não resultaram em estruturas core(Ni)-shell(Pd) como o esperado, mas sim em nanopartículas de paládio depositadas sobre os nanoagregados de níquel. Os catalisadores preparados por decomposição simultânea dos complexos organometálicos, seja pela decomposição direta dos precursores sobre o suporte magnético ou pela impregnação de nanopartículas coloidais previamente formadas, resultaram tanto em nanoligas quanto em nanopartículas com segregação de níquel na superfície de acordo com as proporções empregadas dos dois metais. Todos os métodos explorados possibilitaram a obtenção de catalisadores bimetálicos ativos na hidrogenação do cicloexeno, sendo que o catalisador composto por 1,3% em massa de Ni e 0,017% em massa de Pd, obtido por uma reação de substituição galvânica, foi o catalisador que atingiu a maior atividade na reação de hidrogenação do cicloexeno. O uso de precursores organometálicos para a síntese de nanopartículas suportadas de níquel e níquel-paládio se mostrou um método eficiente para a obtenção de catalisadores com atividade diferenciada. A separação magnética, método empregado para a separação e recuperação dos catalisadores de níquel, permitiu o fácil manuseio e evitou a exposição ao ar e oxidação dos catalisadores, prolongando sua vida útil. / Catalysis is the key for the development of sustainable chemical processes, and consequently, the preparation of active and selective catalysts is always a current issue. Using the unique properties of metal nanoparticles and the advantages of separation and stability of heterogeneous catalysts, this Thesis describes new nanometric nickel and nickel-palladium catalysts, supported on magnetic solids, for hydrogenation of olefins. The nickel catalysts described in this Thesis were synthesized by the decomposition of the organometallic precursor Ni(COD)2 (COD = 1,5-cyclooctadiene), which contains zerovalent nickel, and allows the formation of metal nanoparticles after the hydrogenation of the C=C bonds of the ligand. The optimized nickel catalyst, composed by nickel nanoaggregates, showed superior activity when compared to any other catalyst reported in the literature for the same kind of reaction. Even with the propensity of oxidation of Ni(0), this new catalyst had only the surface oxidized when exposed to air. The fine NiO shell formed was easily reduced to Ni(0) with hydrogen under mild conditions (75°C) when compared to NiO bulk (270-520 °C). The bimetallic nickel-palladium catalysts were synthesized by the galvanic replacement reaction of Pd(OAc)2 and a supported Ni(0) catalyst and by the simultaneous decomposition of the organometallic precursors Ni(COD)2 and Pd2(dba)3 (dba = dibenzylidene acetone) in different molar ratios. The bimetallic catalysts obtained by the galvanic replacement reaction were not formed by core(Ni)-shell(Pd) structures as expected, but they were formed by palladium nanoparticles deposited over the nickel nanoaggregates. The catalysts obtained by simultaneous decomposition of the organometallic complexes, either by the decomposition of the precursors directly over the support or by the impregnation of pre-synthesized nanoparticles, resulted in both nanoalloys and nanoparticles with nickel segregation on the surface, depending of the ratio between the two metals. All methods of preparation of the bimetallic catalysts explored in this study allowed the formation of very active catalysts. On top of that is the catalyst with 1,3 wt% of Ni and 0,017 wt% of Pd, obtained by the galvanic replacement reaction, which achieved the highest activity in the hydrogenation of cyclohexene. The organometallic approach for the synthesis of supported nickel and nickel-palladium nanoparticles is an efficient method to obtain catalysts with outstanding activities. The magnetic separation method employed for separation and recovery of the catalysts containing nickel allows the easy handling and prevents exposure to air and undesirable oxidation of catalysts, extending their lifetimes.
8

Fabrication and Validation of a Nano Engineered Glucose Powered Biofuel Cell

Satheesh, Srejith January 2014 (has links)
Fuel Cells are important forms of sustainable power generation and Biofuel Cells utilize the use of bio-compatible/biodegradable molecules as fuels. Glucose is an ideal candidate to serve this purpose. In this project, a Glucose Fuel Cell (GFC) has been fabricated using the nanomaterials developed in the lab. The skeletal system of this GFC is a three-layered structure; a Membrane Electrode Assembly (MEA) composed of carbon electrodes (anode and cathode) and a Poly Vinyl Alcohol/Poly Acrylic Acid (PVA/PAA) polymer electrolyte. Gold and Silver (Au and Ag) nanoparticles are utilized as catalyst on the anode and cathode respectively, which are prepared by the use of green chemistry practice. One of the GFC has been compacted under hot press and the other non-hot pressed. ,which led to different surface areas. For the validation of the GFC stacks, the glucose concentration was selected around biologically available levels, i.e at 400 mg/dL in both the cases. One trial on hot pressed membrane with 200 mg/dL of glucose is also studied. Short Circuit Current (SCC) and Open Circuit Voltage (OCV) were measured following which the voltages and currents were measured across load resistances. The Thermal Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) studies were carried out on the membrane while the electrodes were characterized by Scanning Electron Microscopy (SEM). UV-Vis studies were carried out on the Au and Ag nanoparticle suspension before and after impregnation of carbon cloth electrodes. Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) has been utilized to estimate the concentration and thus the number of nanoparticles adsorbed on the surface of the carbon cloth. The variations of output current with the thickness of the membranes were studied. The assembly containing the catalytic particles showed power levels ranging between 128.7 nW-332.2 nW in the glucose concentration of 400 mg/dL. Rigorous efforts are under process to scale down the power consumption of electronics to extremely low levels. GFCs could be used as power generators in such devices. The inexpensiveness of the fuel is a remarkable factor.
9

Yolk-Shell Nanostructures Prepared via Block Copolymer Self-Assembly for Catalytic Applications

Shajkumar, Aruni 30 January 2018 (has links) (PDF)
Yolk-shell nanostructures/yolk-shell nanoparticles are defined as a hybrid structure, a mixture of core/shell and hollow particles, where a core particle is encapsulated inside the hollow shell and may move freely inside the shell. Of the various classifications of yolk-shell nanostructures, a structure with an inorganic core and inorganic shell (inorganic/inorganic) has been studied widely due to their unique optical, magnetic, electrical, mechanical, and catalytic properties. In the work presented here, among the different inorganic/inorganic yolk-shell nanostructures noble metal@silica yolk-shell nanostructures has been chosen as the topic of interest. Silica shell possesses many advantages such as chemical inertness, tunable pore sizes, diverse surface morphologies, increasing suspension stability, no reduction in LSPR properties of noble metal nanoparticles when used as a coating for such particles. Noble metal nanoparticles such as AgNPs and AuNPs, on the other hand, possess unique structural, optical, catalytic, and quantum properties. Hence yolk-shell nanostructures with a combination of Ag or Au core and a silica shell (Ag@SiO2 and Au@SiO2) would open to endless possibilities. In this study, four areas were mainly explored: mechanism of silica shell formation over a given template, the synthetic modifications of Ag@SiO2 and Au@SiO2 yolk-shell nanostructures, their application as a potential catalyst, and devising of a flow type catalytic reactor. Despite the growing number of contributions on the topic of yolk-shell nanostructures, particularly Au@SiO2 and Ag@SiO2 yolk-shell nanostructures, a potential for improvement lies in all four aforementioned areas. As an initial study, the effect of different processing conditions as well as the mechanism of silica shell formation over reactive block copolymer templates was investigated. An asymmetric PS-b-P4VP block copolymer was chosen as a structure directing component to deposit silica shell. In order to deposit silica shell, PS-b-P4VP micelles with a collapsed PS core and a swollen P4VP corona was prepared via a solvent exchange method. The growth of silica shell over the PS-b-P4VP micelles (reactive template) was done using in-situ DLS and TEM. The experimental data obtained revealed the 4 distinct stages involved in the silica shell formation over the reactive BCP micellar template starting from the accumulation of silica precursor around the P4VP corona followed by a reactive template mediated hydrolysis-condensation reaction of the silica precursor which eventually lead to the shell densification and shell growth around the micelles. An understanding of the mechanism of silica shell formation over reactive templates provides a direct way to encapsulate various active species such as metal nanoparticles and quantum dots and paves the way for the template mediated synthesis of hybrid nanostructures such as yolk-shell nanoparticles. These studies also serve as a platform to fine-tune the properties of such hybrid nanostructures by varying the reaction parameters during silica shell deposition and reaction time. The next part of the work focused mainly on the synthesis, process optimisation and characterization of Ag@SiO2 and Au@SiO2 yolk-shell nanostructures, and their potential use as a nanocatalyst. A well-known soft template mediated synthesis of the yolk-shell nanostructure was adopted for the present work. For this PS-b-P4VP micelle was used as a dual template for both encapsulation of nanoparticle and the deposition of silica shell. The nanoparticles were entrapped selectively to the BCP micellar core and silica deposition was done by reacting the nanoparticle-loaded micelles with an acidic silica sol which lead to the formation of Ag@PS-b-P4VP@SiO2 or Au@PS-b-P4VP@SiO2 particles with respect to the nanoparticle used. In the case of Ag@PS-b-P4VP particles, upon silica deposition, a partial dissolution of AgNPs was observed whereas AuNPs were stable against dissolution. Hence yolk-shell nanostructures with AuNPs were studied further. As-prepared Au@PS-b-P4VP@SiO2 particles were then subjected to pyrolysis to remove the BCP template. The resulting yolk-shell nanostructures comprised of an AuNP core and a hollow mesoporous silica shell. Upon removal of the BCP template, the Au@SiO2 particles fused together and formed large aggregates. The catalytic properties of Au@SiO2 yolk-shell nanoparticles were explored using a model reaction of reduction of 4-nitrophenol and proved to have good catalytic activity and efficient recyclability. It was observed that catalytic efficiency was hindered by the particle aggregates formed after pyrolysis by creating an inhomogeneity in the system and inaccessibility of the catalytic surface for the reactants. Hence synthetic modifications were needed to overcome such drawbacks. Next part of the work deals with the synthetic modification of Au@SiO2 yolk-shell nanoparticles done by embedding them in a porous silica structure (PSS). Such structural morphology was attained by gelating the excess silica precursor while synthesising the Au@PS-b-P4VP@SiO2 particles. The pyrolytic removal of block copolymer results in the formation of Au@SiO2@PSS catalyst and the porous nature of both the shell and the silica structure provides an easy access for the reactants to the nanocatalyst surface located inside. The catalytic properties of Au@SiO2@PSS were studied using a model reaction of catalytic reduction of 4-nitrophenol (4-NP) and reductive degradation of different dyes. Kinetic studies show that Au@SiO2@PSS catalyst possesses enhanced catalytic activity as compared to other analogous systems reported in the literature so far. Furthermore, catalytic experiments on the reductive degradation of different dyes show that Au@SiO2@PSS catalyst can be considered as a very promising candidate for wastewater treatment. Another proposed direction of applying the Au@SiO2 yolk-shells is by devising a continuous flow catalytic system composed of Au@SiO2 yolk-shell nanoparticles for the effective degradation of azo dyes as a promising candidate for wastewater treatment. This was done by infiltrating the Au@PS-b-P4VP@SiO2 particles inside a porous glass substrate (frits) and the subsequent pyrolytic removal of the BCP template resulting in the formation of Au@SiO2 yolk-shell nanostructures sintered inside the frit pores. The flow catalytic reactor was exploited in terms of studying its catalytic activity in the degradation of azo dyes and 4-nitrophenol and proved to have a catalytic efficiency of ca. 99% in terms of reagent conversion and has a long-term stability under flow. Thus, with a few modifications, these flow type systems can open the doors to a very promising continuous flow catalytic reactor in the future.
10

Nouvelles réactions à économie d'atomes et d'étapes basées sur la catalyse par des nanoparticules d'or et la multicatalyse. Applications dans la synthèse de chimie fine et des odorants / Novel atom- and step-economical reactions based on gold nanoparticles catalysis and multicatalysis. Applications in the synthesis of fine chemicals and odorants

Giorgi, Pascal 12 December 2017 (has links)
L'élaboration de méthodes de synthèse, basées sur l’utilisation d’espèces métalliques a été un sujet de tous les instances en chimie organique. Malgré l’efficacité des métaux utilisés en catalyse homogènes, leurs procédures de recyclage restent limitées. Ce pourquoi, une contrainte supplémentaire a été placée dans la conception de catalyseurs, pouvant offrir à la fois l'efficacité de la catalyse homogène et le recyclage de l’hétérogène. Dans ce contexte, les nanoparticules métalliques sont apparues comme objet phare, en raison de leurs propriétés physico-chimiques inégalées. On a découvert que les nanoparticules de métaux nobles présentaient des propriétés catalytiques similaires dans certains cas, aux complexes monoatomiques. De plus, les Au NPs ont montré une activité catalytique remarquable dans l'oxydation d’alcools activés sous O2. Nous avons donc envisagé des procédures multicatalytiques, basées sur les NPs d’Au. Notre choix d'utiliser des catalyseurs solides était pertinent, puisque les nano-catalyseurs, pour lesquels la fraction de sites actifs se trouve en surface, limitent les risques de cross-quenching. Ici, nous présentons trois nouveaux procédés bicatalytiques permettant l’accès, à des chromenes/quinoléines (53-93%) via une oxydation / Michael Addition/ aldolisation, combinant nanocatalyse et catalyse basique, l’accès à des ortho-THC (50-81%) via oxydation / arylation / cyclisation, combinant nanocatalyse et catalyse supportée, ainsi qu’une une oxydation / hydrolyse en cascade, pour accéder à l’HMLA (86%, sel 93%), un grand panel de produits d'activité biologique reconnue, utilisé en parfumerie ou visant une pré-industrialisation via la chimie en flux continu. / Elaboration of synthetic methods based on metal-catalyzed reactions has been a hot topic in organic chemistry. Despite good efficiency, catalysis proceeding homogeneously, are limited in the operation of recovering/recycling of the catalysts. An important stress was placed to design catalysis, offering both the efficiency of homogeneous catalysts and the recyclability of heterogeneous catalysts. In this context, metal nanoparticles merged as a key tool, due to their unique physical and chemical properties. Notably, Au NPs have shown remarkable catalytic activity in the oxidation of activated alcohols under O2 atmosphere. Since now, the access to more complex molecules is the next step forward for this field, we envisioned multicatalytic roads, based on the oxidation of activated alcohols via supported Au NPs. Our choice of using solid catalysts was relevant, since nanostructured catalysts for which the fraction of active sites are located on the surface, limit the risk of cross-quenching. The latter carbonyl formed, could be further converted in situ, via tandem protocol. Herein, we developed novel, atom- and step-economical bicatalytic one-pot processes, to access substituted chromenes/quinolines (53-93%) by tandem oxidation/hetero-Michael addition/aldolisation combining nanocatalysis and base catalysis, ortho-THCs (50-81%) via tandem oxidation/arylation/cyclisation combining nanocatalysis and supported catalysts and a tandem cascade oxidation/hydrolysis to access HMLA (86%, sel 93%). A large panel of products of biological activity relevance, pertaining to the fragrance chemistry or aiming in some cases, pre-industrial scalability via continuous flow applications.

Page generated in 0.0627 seconds