• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Percolated Si:SiO2 Nanocomposites: Oven- vs. Millisecond Laser-induced Crystallization of SiOx Thin Films

Schumann, E., Hübner, R., Grenzer, J., Gemming, S., Krause, M. 07 May 2019 (has links)
Three-dimensional nanocomposite networks consisting of percolated Si nanowires in a SiOx matrix, Si:SiO2, were studied. The structures were obtained by reactive ion beam sputter deposition of SiOx (x~0.6) thin films at 450 °C and subsequent crystallization using conventional oven as well as millisecond line focus laser annealing. Rutherford backscattering spectrometry, Raman spectroscopy, X-ray diffraction, cross-sectional and energy-filtered transmission electron microscopy were applied for sample characterization. While oven annealing resulted in a mean Si wire diameter of 10 nm and a crystallinity of 72 % within the Si volume, almost single-domain Si structures with 30 nm in diameter and almost free of amorphous Si were obtained by millisecond laser application. The structural differences are attributed to the different crystallization processes: Conventional oven tempering proceeds via solid state, millisecond laser application via liquid phase crystallization of Si. The 5 orders of magnitude larger diffusion constant in the liquid phase is responsible for the three times larger Si nanostructure diameter. In conclusion, laser annealing offers not only significantly shorter process times but moreover a superior structural order of nano-Si compared to conventional heating.
2

Percolated Si:SiO2 Nanocomposite: Oven- vs. Laser-Induced Crystallization of SiOx Thin Films

Schumann, Erik 24 May 2022 (has links)
Silizium basierende Technologie bestimmt den technologischen Fortschritt in der Welt und ist weiterhin ein Material für die weitere Entwicklung von Schlüsseltechnologien. Die Änderung der Silizium-Materialeigenschaft der optischen und elektronische Bandlücke durch die Reduktion der Materialdimension auf die Nanometerskala ist dabei von besonders großem Interesse. Die meisten Silizium-Nanomaterialien bestehen aus Punkt-, Kugel- oder Drahtformen. Ein relativ neues Materialsystem sind dreidimensionale, durchdringende, Nano-Komposit Netzwerke aus Silizium in einer Siliziumdioxid Matrix. Die vorliegende Arbeit untersucht die Entstehung von dreidimensionalen Silizium-Nanokomposit-Netzwerken durch Abscheidung eines siliziumreichen Siliziumoxids(SiOx, mit x<2) und anschlieÿender thermischen Behandlung. Hierbei wurden die reaktive Ionenstrahl-Sputterabscheidung (IBSD), sowie das reaktive Magnetronsputtern (RMS) verglichen. Auch wurden die Unterschiede zwischen klassischer Ofen und Millisekunden-Linienlaser Behandlung untersucht. Abgeschiedene und thermisch behandelte Dünnschichten wurden hinsichtlich der integralen Zusammensetzung, Homogenität, Morphologie und Struktur mittels Rutherford-Rückstreuspektroskopie, Ramanspektroskopie, Röntgenbeugung, spektroskopische Ellipsometrie, Photospektrometrie und (Energie gefilterter) Transmissionselektronenmikroskopie untersucht. Abhängig von der Abscheidemethode und des thermischen Ausheilprozesses wurden unterschiedliche Strukturgrößen und Kristallisationsgrade erzeugt. Insbesondere wurde gezeigt, dass während der 13 ms langen Laserbearbeitung (Ofen: 90 min) wesentlich größere Strukturen (laser:~50 nm; oven:~10 nm) mit einer deutlich höheren Kristallinität (laser:~92-99%; oven:~35-80%) entstehen. Darüber hinaus erhält sich die abscheidebedingte Morphologie nach der Ofenbehandlung, verschwindet jedoch nach der Laserprozessierung. Erklärt wurde dies mit einem Prozess über die flüssige Phase während der Laserbearbeitung, im Gegensatz zu einem Festphasenprozess bei der Ofenbehandlung. Abschließend wurde gezeigt, dass absichtlich eingebrachte vertikale und horizontale Schwankungen der Zusammensetzung genutzt werden können, um definierte Silizium Nanonetzwerke mit einer dreidimensionalen quadratischen Netzstruktur herzustellen.:1 Introduction 2 Fundamentals 2.1 The silicon - silicon oxide system 2.1.1 The Si-O phase diagram 2.1.2 Chemical reaction consideration 2.2 Phase separation of binary systems 2.2.1 Phase separation regimes 2.2.2 Diffusion in solids 2.3 Different types of silicon nanostructures 2.3.1 0D - Silicon nanoparticles 2.3.2 1D - Silicon nanowires 2.3.3 3D - Silicon nanonetworks 3 Experimental methods 3.1 SiOx thin film deposition 3.1.1 SiOx thin films by ion beam sputter deposition 3.1.2 SiOx thin films by reactive magnetron sputter deposition 3.1.3 Comparison of ion beam and magnetron sputter deposition 3.2 Thermal processing of as-deposited SiOx thin films 3.2.1 Oven treatment 3.2.2 Laser treatment 3.3 Thin-film characterization 3.3.1 Rutherford backscattering 3.3.2 Spectroscopic ellipsometry and photospectrometry 3.3.3 Raman spectroscopy 3.3.4 X-ray diffraction 3.3.5 Transmission electron microscopy 4 Results 4.1 Accessible SiOx compositions as a function of deposition and annealing method 4.2 Structure and properties of ion beam sputter deposited SiOx thin films before and after thermal processing 4.2.1 Phase- and microstructure of SiO0:6 thin films deposited by ion beam sputter deposition at 450°C 4.2.2 Phase- and microstructure of SiO0.6 thin films deposited by ion beam sputter deposition at room temperature 4.3 Structure and properties of reactive magnetron sputter deposited SiOx thin films before and after thermal processing 4.4 Multilayer SiOx films for the generation of defined squared mesh structures 5 Discussion 5.1 Compositional homogeneity of SiO0:6 thin films before and after thermal treatment 5.2 Phase structure of as-deposited SiOx thin films 5.3 Influence of the thermal treatment on the structural properties of percolated Si:SiO2 nanostructures 5.3.1 Observed structural properties 5.3.2 Origin of different structure sizes - liquid vs. solid state crystallization 5.4 Influence of the deposition temperature during ion beam sputtering on the structural properties of percolated Si:SiO2 nanostructures before and after thermal processing 5.5 Influence of the deposition method on the structural properties of percolated Si:SiO2 nanostructures 5.6 Formation of interface layers and electrical characterization 6 Summary and outlook 6.1 Summary 6.2 Outlook A EFTEM imaging / Silicon-based technology determines the technological progress in the world significantly and is still a material of choice for further development of key technologies. In particular the reduction of silicon structure sizes to a nanometer scale are of great interest. Most silicon nano structures are based on spherical, dot-like or cylindrical, wire-like geometries. A relatively new material system are three dimensional percolated nanocomposite networks of silicon within a silica matrix. To form any of these nano structures fast, room temperature processes are desired which also offer the possibility of structure modification by different process management. The present work studies the formation of three-dimensional silicon nanocomposite networks by the deposition of a silicon rich silicon oxide (SiO x , with x < 2) and subsequent thermal treatment. Thereby, reactive ion beam sputter deposition (IBSD) as well as reactive magnetron sputtering (RMS) was compared. As well, the differences between a conventional oven and a millisecond line-focused diode laser were studied. As-deposited and thermally treated thin films were characterized with regard to the overall mean composition, homogeneity, morphology and structure by Rutherford backscattering, Raman spectroscopy, X-ray diffraction, spectroscopic ellipsometry, photospectrometry as well as cross-sectional and energy-filtered transmission electron microscopy. Depending on the deposition method as well as the thermal treatment process different structure sizes and degrees of crystallization were achieved. Most notably it was found, that during 13 ms laser processing (oven: min. 90 min), much bigger structures (laser: ≈ 50 nm; oven: ≈ 10 nm) with a notably higher degree of crystallization (laser: ≈ 92-99%; oven: ≈ 35-80%) evolve. Moreover, the structure morphology after deposition is preserved during oven treatment but diminishes following laser processing. This was explained by a process via the liquid phase for laser processing in contrast to a solid state process during oven treatment. Finally it was shown, that intentional introduced vertical and horizontal composition fluctuations can be used to form well-defined silicon nano-networks with a three dimensional square mesh structure.:1 Introduction 2 Fundamentals 2.1 The silicon - silicon oxide system 2.1.1 The Si-O phase diagram 2.1.2 Chemical reaction consideration 2.2 Phase separation of binary systems 2.2.1 Phase separation regimes 2.2.2 Diffusion in solids 2.3 Different types of silicon nanostructures 2.3.1 0D - Silicon nanoparticles 2.3.2 1D - Silicon nanowires 2.3.3 3D - Silicon nanonetworks 3 Experimental methods 3.1 SiOx thin film deposition 3.1.1 SiOx thin films by ion beam sputter deposition 3.1.2 SiOx thin films by reactive magnetron sputter deposition 3.1.3 Comparison of ion beam and magnetron sputter deposition 3.2 Thermal processing of as-deposited SiOx thin films 3.2.1 Oven treatment 3.2.2 Laser treatment 3.3 Thin-film characterization 3.3.1 Rutherford backscattering 3.3.2 Spectroscopic ellipsometry and photospectrometry 3.3.3 Raman spectroscopy 3.3.4 X-ray diffraction 3.3.5 Transmission electron microscopy 4 Results 4.1 Accessible SiOx compositions as a function of deposition and annealing method 4.2 Structure and properties of ion beam sputter deposited SiOx thin films before and after thermal processing 4.2.1 Phase- and microstructure of SiO0:6 thin films deposited by ion beam sputter deposition at 450°C 4.2.2 Phase- and microstructure of SiO0.6 thin films deposited by ion beam sputter deposition at room temperature 4.3 Structure and properties of reactive magnetron sputter deposited SiOx thin films before and after thermal processing 4.4 Multilayer SiOx films for the generation of defined squared mesh structures 5 Discussion 5.1 Compositional homogeneity of SiO0:6 thin films before and after thermal treatment 5.2 Phase structure of as-deposited SiOx thin films 5.3 Influence of the thermal treatment on the structural properties of percolated Si:SiO2 nanostructures 5.3.1 Observed structural properties 5.3.2 Origin of different structure sizes - liquid vs. solid state crystallization 5.4 Influence of the deposition temperature during ion beam sputtering on the structural properties of percolated Si:SiO2 nanostructures before and after thermal processing 5.5 Influence of the deposition method on the structural properties of percolated Si:SiO2 nanostructures 5.6 Formation of interface layers and electrical characterization 6 Summary and outlook 6.1 Summary 6.2 Outlook A EFTEM imaging
3

Synthese und Funktion nanoskaliger Oxide auf Basis der Elemente Bismut und Niob

Wollmann, Philipp 22 March 2012 (has links)
Am Beispiel von ferroelektrischen Systemen auf Bismut-Basis (Bismutmolybdat, Bismutwolframat und Bismuttitanat) und von Strontiumbariumniobat werden neue Möglichkeiten zur Synthese solcher Nanopartikel aufgezeigt. Die Integration der Nanopartikel in transparente Nanokompositmaterialien und die Entwicklung neuer Precursoren für die Herstellung von Dünnschichtproben gehen den Untersuchungen zur Anwendung als elektrooptische aktive Materialien voraus. Durch weitere Anwendungsmöglichkeiten in der Photokatalyse, dem Test dampfadsorptiver Eigenschaften mit Hilfe eines neuartigen Adsorptionstesters (Infrasorb) und auch mit Hilfe der Ergebnisse der ferroelektrischen Charakterisierung von gesinterten Probenkörpern aus einem Spark-Plasma-Prozess wird ein gesamtheitlicher Überblick über die vielfältigen Aspekte in der Arbeit mit nanoskaligen, ferroelektrischen Materialien gegeben.:Inhaltsverzeichnis...........................................................................................................5 Abkürzungsverzeichnis ...................................................................................................9 1. Motivation....................................................................................................................11 2. Stand der Forschung und theoretischer Teil ...............................................................14 2.1. Nanoskalige Materialien...........................................................................................15 2.1.1. Nanopartikel und Nanokompositmaterialien ....................................................... 15 2.1.2. Dünnschichten..................................................................................................... 21 2.1.3. Anwendungen in der Photokatalyse.................................................................... 22 2.1.4. Anwendungen in der Gas- und Dampfsensorik.................................................... 24 2.2. Ferroelektrika .........................................................................................................26 2.2.1. Bismutmolybdat................................................................................................... 32 2.2.2. Bismutwolframat.................................................................................................. 34 2.2.3. Bismuttitanat ....................................................................................................... 36 2.2.4. Strontiumbariumniobat......................................................................................... 37 2.3. Verwendete Methoden.............................................................................................40 2.3.1. Spark-Plasma-Sintering ........................................................................................40 2.3.2. Bestimmung ferroelektrischer Eigenschaften ...................................................... 42 2.3.3. Charakterisierung nichtlinearer, elektrooptischer Eigenschaften......................... 43 3. Experimenteller Teil ....................................................................................................51 3.1. Synthesevorschriften................................................................................................52 3.1.1. Verwendete Chemikalien und Substrate.............................................................. 52 3.1.2. Solvothermalsynthese von Bi2MO6 (M = Mo, W)................................................... 55 3.1.3. Phasentransfersynthese von Bi2MO6 (M = Mo, W)............................................... 56 3.1.4. Präparation von Bi2MO6/PLA Nanokompositmaterialien (M = Mo, W) ................... 57 3.1.5. Sol-Gel-Synthese von Bi2MO6 (M = Mo, W), Bi4Ti3O12 und Ba0.25Sr0.75Nb2O6 und Dünnschichten..................... 57 3.1.6. Mikroemulsionssynthese von Bi4Ti3O12 ............................................................... 59 3.1.7. Sol-Gel-Synthese von Bi2Ti2O7............................................................................. 60 3.1.8. Synthese von BiOH(C2O4), BiOCH3COO und Bi(CH3COO)3................................... 61 3.2. Vorschriften zur Durchführung und Charakterisierung...............................................62 3.2.1. Verwendete Geräte und Einstellungen ................................................................ 62 3.2.2. Spark Plasma Sintering von Bi2MO6 (M = Mo,W) und Bestimmung ferroelektrischer Eigenschaften ........................ 65 3.2.3. Prüfung elektrooptischer Eigenschaften, Präparation der Bauteile und Messaufbau .............................................. 67 3.2.4. Durchführung photokatalytischer Messungen ....................................................... 69 3.2.5. Messung der Dampfadsorption an Nanopartikeln mit Hilfe berührungsloser Detektion ........................................... 70 4. Ergebnisse und Diskussion...........................................................................................71 4.1. Synthese und Eigenschaften von nanoskaligen Materialien......................................72 4.1.1. Synthese von Bi2MO6 (M = Mo, W) Nanopartikeln................................................. 72 4.1.2. Nanokompositmaterialien mit Bi2MO6 (M = Mo, W)................................................ 81 4.1.3. Synthese der Bismuttitanate Bi4Ti3O12 und Bi2Ti2O7 .......................................... 84 4.1.4. Herstellung von Dünnschichten der Systeme Bi2MO6 (M = Mo, W), Bi4Ti3O12 und Sr0.75Ba0.25Nb2O6 ................. 88 4.2. Funktion der nanoskaligen Materialien .....................................................................100 4.2.1. Bismuthaltige Nanopartikel in der Photokatalyse ..................................................100 4.2.2. Spark-Plasma-Sintern von Bi2MO6-Nanopartikel (M = Mo, W)................................103 4.2.3. Elektrooptische Eigenschaften von Dünnschichten und Kompositmaterialien ............................................................108 4.2.4. Messung der Dampfadsorption an Bi2MO6 (M = Mo, W)-Nanopartikeln mit Hilfe berührungsloser Detektion ............114 4.3. Synthese von BiOH(C2O4), BiO(CH3COO) und Bi(CH3COO)3....................................118 5. Zusammenfassung ......................................................................................................127 6. Ausblick .......................................................................................................................131 7. Literatur ......................................................................................................................132 8. Abbildungs- und Tabellenverzeichnis ..........................................................................146 8.1. Abbildungsverzeichnis...............................................................................................146 8.2. Tabellenverzeichnis...................................................................................................152 9. Anhang ........................................................................................................................154 9.1. Synthese und Eigenschaften von nanoskaligen Materialien......................................155 9.1.1. Solvothermalsynthese von Bi2MO6 (M = Mo, W).....................................................155 9.1.2. Phasentransfersynthese von Bi2MO6 (M = Mo, W).................................................156 9.1.3. Synthese der Bismutmolybdate Bi4Ti3O12 und Bi2Ti2O7 .......................................156 9.1.4. Herstellung von Dünnschichten der Systeme Bi2MO6 (M = Mo, W), Bi4Ti3O12 und Sr0.75Ba0.25Nb2O6 .................159 9.2. Funktion der nanoskaligen Materialien ......................................................................164 9.2.1. Spark-Plasma-Sintern..............................................................................................164 9.2.2. Elektro-optische Eigenschaften von Dünnschichten und Kompositmaterialien .........................................................166 9.2.3. Messung der Dampfadsorption an Bi2MO6 (M = Mo, W)-Nanopartikeln mit Hilfe berührungsloser Detektion ...........174 9.3. Synthese von BiOH(C2O4), BiO(CH3COO) und Bi(CH3COO)3.....................................175 9.3.1. DTA-TG-Ergebnisse .................................................................................................175 9.3.2. Kristalldaten und Strukturverfeinerung ...................................................................177 9.4. Quelltexte ..................................................................................................................181 9.4.1. MATLAB-Skript zur Auswertung elektrooptischer Koeffizienten................................181 9.4.2. MATLAB-Skript zur Auswertung dampfadsorptiver Eigenschaften............................182

Page generated in 0.2899 seconds