• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 237
  • 74
  • 67
  • 43
  • 8
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 687
  • 211
  • 123
  • 122
  • 92
  • 89
  • 84
  • 79
  • 67
  • 65
  • 63
  • 63
  • 58
  • 57
  • 56
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Utilization of Nano-Catalysts for Green Electric Power Generation

Shodiya, Titilayo January 2015 (has links)
<p>Nano-structures were investigated for the advancement of energy conversion technology because of their enhanced catalytic, thermal, and physiochemical interfacial properties and increased solar absorption. Hydrogen is a widely investigated and proven fuel and energy carrier for promising "green" technologies such as fuel cells. Difficulties involving storage, transport, and availability remain challenges that inhibit the widespread use of hydrogen fuel. For these reasons, in-situ hydrogen production has been at the forefront of research in the renewable and sustainable energy field. A common approach for hydrogen generation is the reforming of alcoholic and hydrocarbon fuels from fossil and renewable sources to a hydrogen-rich gas mixture.</p><p>Unfortunately, an intrinsic byproduct of any fuel reforming reaction is toxic and highly reactive CO, which has to be removed before the hydrogen gas can be used in fuel cells or delicate chemical processes. In this work, Au/alpha-Fe2O3 catalyst was synthesized using a modified co-precipitation method to generate an inverse catalyst model. The effects of introducing CO2 and H2O during preferential oxidation (PROX) of CO were investigated. For realistic conditions of (bio-)fuel reforming, 24% CO2 and 10% water the highest document conversion, 99.85% was achieved. The mechanism for PROX is not known definitively, however, current literature believes the gold particle size is the key. In contrast, we emphasize the tremendous role of the support particle size. A particle size study was performed to have in depth analysis of the catalysts morphology during synthesis. With this study we were also able to modify how the catalyst was made to further reduce the particle size of the support material leading to ~99.9% conversion. We also showed that the resulting PROX output gas could power a PEM fuel cell with only a 4% drop in power without poisoning the membrane electrode assembly.</p><p> The second major aim of this study is to develop an energy-efficient technology that fuses photothermal catalysis and plasmonic phenomena. Although current literature has claimed that the coupling of these technologies is impossible, here we demonstrate the fabrication of reaction cells for plasmon-induced photo-catalytic hydrogen production. The localized nature of the plasmon resonance allows the entire system to remain at ambient temperatures while a high-temperature methanol reformation reaction occurs at the plasmonic sites. Employing a nanostructured plasmonic substrate, we have successfully achieved sufficient thermal excitement (via localized surface plasmon resonance (LSPR)) to facilitate a heterogeneous chemical reaction. The experimental tests demonstrate that hydrogen gas can indeed be generated in a cold reactor, which has never been done before. Additionally, the proposed method has the highest solar absorption out of several variations and significantly reduces the cost, while increasing the efficiency of solar fuels.</p> / Dissertation
242

INTERACTIONS AND EFFECTS OF BIOMOLECULES ON AU NANOMATERIAL SURFACES

Sethi, Manish 01 January 2011 (has links)
Au nanoparticles are increasingly being used in biological applications. Their use is of interest based upon their unique properties that are achieved at the nanoscale, which includes strong optical absorbances that are size and aggregation state dependent. Such absorbances can be used in sensitive chemical/biological detection schemes where bioligands can be directly attached to the nanoparticle surface using facile methods. Unfortunately, a number of complications persist that prevent their wide-scale use. These limitations include minimal nanoparticle stability in biological-based media of high ionic strength, unknown surface functionalization effects using simple biomolecules, and determining the binding motifs of the ligands to the nanoparticle surface. This situation can be further complicated when employing shaped materials where crystallographic facets can alter the binding potential of the bioligands. We have attempted to address these issues using traditional nanoparticle functionalization techniques that are able to be characterized using readily available analytical methods. By exploiting the optical properties of Au nanomaterials, we have been able to determine the solution stability of Au nanorods in a buffered medium and site-specifically functionalized Au nanomaterials of two different shapes: spheres and rods. Such abilities are hypothesized to be intrinsic to the bioligand once bound to the surface of the materials. Our studies have focused mainly on simple amino acids that have demonstrated unique assembly abilities for the materials in solution, resulting in the formation of specific patterns. The applications for such capabilities can range from the use of the materials as sensitive biochemical sensors to their directed assembly for use as device components.
243

Etude des spécificités du frittage par micro-ondes de poudres d'alumine alpha et gamma / Investigation of the specific aspects of microwave sintering in alpha and gamma alumina powders

Croquesel, Jérémy 21 January 2015 (has links)
Pour répondre aux nouvelles contraintes économiques et environnementales auxquelles l'industrie doit faire face aujourd'hui, des techniques de frittage rapide se développent pour la fabrication des céramiques. Parmi elles, une technique prometteuse est le frittage par micro-ondes dans laquelle le champ électromagnétique à l'origine du chauffage pourrait permettre d'obtenir des microstructures innovantes, tout en réduisant la température, le temps de cycle et la consommation énergétique. Pour expliquer le comportement particulier des poudres en présence des micro-ondes, différentes théories prévoyant des effets thermiques ou non-thermiques ont été proposées. L'existence même de ces effets n'a cependant toujours pas été démontrée de façon sûre, notamment à cause des limites des dispositifs expérimentaux qui ne permettent pas une comparaison pertinente du frittage micro-ondes avec le frittage conventionnel. Dans ce contexte, les travaux réalisés pendant cette thèse, dans le cadre du projet ANR Fµrnace, ont été consacrés à la mise en évidence et à la compréhension de l'influence du champ électromagnétique sur les mécanismes responsables de la densification et de l'évolution microstructurale de poudres céramiques. Une forte attention a été portée au développement technologique de la cavité de chauffage micro-ondes monomode utilisée dans nos recherches. Le procédé a été entièrement automatisé et équipé de divers systèmes de contrôle de la température et du retrait des échantillons pour que les résultats obtenus puissent être comparés de façon incontestable avec ceux issus d'essais de frittage conventionnel. Des simulations numériques ont été réalisées pour améliorer la compréhension de la propagation du champ électromagnétique et de son interaction avec les éléments introduits au sein de la cavité micro-ondes. Un matériau de référence, l'alumine, a été choisi et l'influence de certaines caractéristiques des poudres (surface spécifique, présence de dopants, transformation de phase) sur les cinétiques de densification et l'évolution microstructurale a été étudiée. Les résultats obtenus ont permis d'identifier des effets spécifiques des micro-ondes sur les mécanismes de diffusion responsables de la densification et de la croissance granulaire. Ces effets se produisent principalement pendant les stades initial et intermédiaire du frittage, ainsi que pendant la transformation de phase de poudres de transition et ont été attribués à une force de type pondéromotrice déjà proposée dans la littérature. L'utilisation de cette technique de frittage n'a cependant pas permis d'obtenir des alumines avec des microstructures plus performantes que celles issues du frittage conventionnel. / To meet the new economic and environmental constraints that the industry faces today, fast sintering processes are developed for the fabrication of ceramics. Among them, a promising technique is microwave sintering, in which the electromagnetic field at the origin of heating could be used to obtain innovative microstructures, while reducing sintering temperature, cycle time and energy consumption. To explain the particular behavior of powders under microwaves, different hypotheses related with thermal or non-thermal effects have been proposed in the literature. These effects, however, has not really been demonstrated for the moment, especially because of the limits of experimental devices that do not allow for a meaningful comparison of microwave sintering with conventional sintering. In this context, the work performed during this thesis in the framework of FμRNACE ANR project has been dedicated to identifying and understanding the influence of the electromagnetic field on the mechanisms of densification and microstructure changes in ceramic powders. High attention has been paid to the technological development of the single-mode microwave cavity used in our research. The heating process has been fully automated and instrumented with various equipments allowing for temperature and sample shrinkage measurement. The aim was to ensure direct and reliable comparison of microwave sintering data with those resulting from conventional sintering. Numerical simulation has been conducted to improve our understanding of the propagation of the electromagnetic field and its interaction with the components introduced in the microwave cavity. Alumina has been chosen as a reference material and the influence of several features of the powders (specific surface area, doping elements, phase transformation) on densification kinetics and microstructure changes has been studied. The results have identified specific effects of microwaves on the mechanisms controlling densification and grain growth. These effects occur essentially during the initial and intermediate stages of sintering and during the phase transformation of transition powders. They have been attributed to the ponderomotive force as already proposed in the literature. However the use of microwaves as a heating mode does not permit obtaining alumina with better microstructures than those resulting from conventional sintering.
244

Graphene-Wrapped Hierarchical TiO2 Nanoflower Composites with Enhanced Photocatalytic Performance

Lui, Gregory January 2014 (has links)
Increasing energy demands as well as the depletion of traditional energy sources has led to the need for the development and improvement of energy conversion and storage technologies. Concerns regarding climate change and environmental awareness has also created increased support for renewable energy and clean technology research. One technology of interest is the photocatalyst, which is a material that is able to use natural light irradiation to create electrical currents or drive useful chemical reactions. For this purpose, a strong photocatalytic material has the following properties: i) strong absorbance over a wide solar radiation spectrum; ii) high surface area for adsorbance of target species; iii) high electron efficiency characteristics such as high conductivity, long charge-carrier lifetimes, and direct pathways for electron transport; and iv) good chemical stability. All of these requirements serve to maximize the efficiency and overall output of the device, and are a means of overcoming the performance hurdle required for the commercialization of various energy conversion technologies. Unfortunately, current photocatalytic materials suffer from small absorbance windows and high recombination rates which greatly reduce the conversion efficiency of the catalyst. Titanium dioxide (TiO2), the most well-known and widely used photocatalyst, can only absorb light within the ultraviolet (UV) range – which accounts for only a small fraction of the entire solar spectrum. For this reason, the majority of recent research has been directed toward producing photocatalysts that are able to absorb light within the visible and infrared range in order to maximize the amount of light absorbed in the solar spectrum. Other research is also being conducted to increase electrical conductivity and charge-carrier separation to further increase conversion efficiency. It is hoped that these two major problems surrounding photocatalysis can be solved by using novel functional nanomaterials. Nanomaterials can be synthesized using three main techniques: crystal structuring, doping, and heterostructuring. By controlling the structure of the crystal, materials of different phase, morphology, and exposed crystal facets can be synthesized. These are important for controlling the electronic properties and surface reactivity of the photocatalyst. Doping is the act of introducing impurities into a material in order to modify its band structure and create a red shift in light absorption. Lastly, heterostructuring is a method used to combine different photocatalysts or introduce co-catalysts in order to widen the range of absorption, encourage charge separation, or both. Many novel photocatalytic materials have been synthesized using these techniques. However, the next-generation photocatalytic material has remained elusive due to the high cost of production and complexity of synthesis. This thesis proposes a novel photocatalytic material that can be used in photocatalyzed waste-water remediation. Graphene-wrapped hierarchical TiO2 nanoflowers (G-TiO2) are synthesized using a facile synthesis method. TiO2 is a material of particular interest due to its chemical and photo-corrosion stability, high redox potential, strong electronic properties, and relative non-toxicity. Hierarchical structures are highly desired because they are able to achieve both high surface area and high conductivities. Graphene hybridization is a popular method for creating composites with highly conductive networks and highly adsorptive surfaces. To the best of my knowledge, the hybridization of graphene on hierarchical TiO2 structures without pre-functionalization of TiO2 has not yet been demonstrated in literature. Therefore, it is proposed that the use of such a material would greatly simplify the synthesis process and enhance the overall photocatalytic performance of TiO2 over that of commercial TiO2 photocatalysts. In the first study, hierarchical TiO2 nanoflowers are synthesized using a solvothermal reaction. It is then shown that under UV irradiation, the hierarchical TiO2 material is able to outperform commercial TiO2 material in the photodegradation of methylene blue (MB). Further characterization shows that this improvement is explained by a higher electrical conductivity, and exists in spite of having a lower specific surface area compared to the commercial material. In the second study, G-TiO2 is synthesized by mixing hierarchical TiO2 nanoflowers with graphene oxide (GO) and reducing GO in a hydrothermal reaction. Photocatalytic tests show that this hybridization further improves the performance of the hierarchical TiO2. Further studies reveal that an optimal graphene loading of 5 wt% is desired in order to achieve the higher rate of MB decomposition, and greatly outperforms P25 in this task. Characterization shows that G-TiO2 composites have increased specific surface area and electrical conductivity compared to the hierarchical TiO2 nanoflower. It is believed that this work will provide a simple and efficient avenue for synthesizing graphene–TiO2 composites with greatly improved photocatalytic activity. This work may also find use in other photocatalytic applications such as chemical deconstruction and manufacturing, hydrogen production, solar cells, and solar enhanced fuel cells.
245

Mechanical Behaviour of Nanocrystalline Rhodium Nanopillars under Compression

Alshehri, Omar 27 January 2012 (has links)
Nanomechanics emerged as chemists and physicists began fabricating nanoscale objects. However, there are some materials that have neither been fabricated nor mechanical investigated at the nanoscale, such as rhodium. Rhodium is used in many applications, especially in coatings and catalysis. To contribute to the understanding the nano-properties of this important material, rhodium was fabricated and mechanically investigated at the nanoscale. The nanopillars approach was employed to study size effects on mechanical properties. Nanopillars with different diameters were fabricated using electroplating followed by uniaxial compression tests. SEM was used as a quality control technique by imaging the pillars before and after compression to assure the absence of buckling, barrelling, or any other problems. Transmission electron microscopy (TEM) and SEM were used as microstructural characterization techniques, and the energy-dispersive X-ray spectroscopy (EDX) was used as the chemical characterization technique. Due to substrate induced effects, only the plastic region of the stress-strain curves were investigated, and it was revealed that rhodium softens with decreased nanopillar diameter. This softening/weakening effect was due to the nanocrystallinity of the fabricated pillars. This effect is consistent with the literature that demonstrates the reversed size effect of nanocrystalline metals, i.e., smaller is weaker. Further studies should focus on eliminating the substrate effect that was due to the adhesion layers between Rh and the silicon substrate being softer than Rh, consequently, causing Rh to sink into the adhesion layer when compressed and thus perturbing the stress-strain curve. Moreover, further investigation of other properties of Rh is required to achieve a comprehensive understanding of Rh at the nanoscale, and to render it suitable for specific, multivariable applications.
246

Synthesis, Electrochemistry and Solid-Solution Behaviour of Energy Storage Materials Based on Natural Minerals

Ellis, Brian January 2013 (has links)
Polyanionic compounds have been heavily investigated as possible electrode materials in lithium- and sodium-ion batteries. Chief among these is lithium iron phosphate (LiFePO4) which adopts the olivine structure and has a potential of 3.5 V vs. Li/Li+. Many aspects of ion transport, solid-solution behaviour and their relation to particle size in olivine systems are not entirely understood. Morphology, unit cell parameters, purity and electrochemical performance of prepared LiFePO4 powders were greatly affected by the synthetic conditions. Partially delithiated olivines were heated and studied by Mössbauer spectroscopy and solid-solution behaviour by electron delocalization was observed. The onset of this phenomenon was around 470-500 K in bulk material but in nanocrystalline powders, the onset of a solid solution was observed around 420 K. The isostructural manganese member of this family (LiMnPO4) was also prepared hydrothermally. Owing to the thermal instability of MnPO4, partially delithiated LiMnPO4 did not display any solid-solution behaviour. Phosphates based on the tavorite (LiFePO4OH) structure include LiVPO4F and LiFePO4(OH)1-xFx which may be prepared hydrothermally or by solid state routes. LiVPO4F is a high capacity (2 electrons/transition metal) electrode material and the structures of the fully reduced Li2VPO4F and fully oxidized VPO4F were ascertained. Owing to structural nuances, the potential of the iron tavorites are much lower than that of the olivines. The structure of Li2FePO4F was determined by a combined X-ray and neutron diffraction analysis. The electrochemical properties of very few phosphates based on sodium are known. A novel fluorophosphate, Na2FePO4F, was prepared by both solid state and hydrothermal methods. This material exhibited two two-phase plateau regions on cycling in a half cell versus sodium but displayed solid-solution behaviour when cycled versus lithium, where the average potential was 3.3 V. On successive cycling versus Li a decrease in the sodium content of the active material was observed, which implied an ion-exchange reaction occurred between the material and the lithium electrolyte. Studies of polyanionic materials as positive electrode materials in alkali metal-ion batteries show that some of these materials, namely those which contain iron, hold the most promise in replacing battery technologies currently available.
247

Preparation and properties of thermally/electrically conductive material architecture based on graphene and other nanomaterials

Liang, Qizhen 05 July 2011 (has links)
With excellent electrical, thermal and mechanical properties as well as large specific surface area, graphene has been applied in next-generation nano-electronics, gas sensors, transparent electrical conductors, thermally conductive materials, and superior energy capacitors etc. Convenient and productive preparation of graphene is thereby especially important and strongly desired for its manifold applications. Chemically developed functionalized graphene from graphene oxide (GO) has significantly high productivity and low cost, however, toxic chemical reduction agents (e.g. hydrazine hydrate) and raised temperature (400-1100°C) are usually necessary in GO reduction yet not preferred in current technologies. Here, microwaves (MW) are applied to reduce the amount of graphene oxide (GO) at a relatively low temperature (~165°C). Experimental results indicate that resurgence of interconnected graphene-like domains contributes to a low sheet resistance with a high optical transparency after MW reduction, indicating the very high efficiency of MW in GO's reduction. Moreover, graphene is usually recumbent on solid substrates, while vertically aligned graphene architecture on solid substrate is rarely available and less studied. For TIMs, electrodes of ultracapacitors, etc, efficient heat dissipation and electrical conductance in normal direction of solid surfaces is strongly desired. In addition, large-volume heat dissipation requires a joint contribution of a large number of graphene sheets. Graphene sheets must be aligned in a large scale array in order to meet the requirements for TIM application. Here, thermally conductive fuctionalized multilayer graphene sheets (fMGs) are efficiently aligned in a large scale by vacuum filtration method at room temperature, as evidenced by SEM images and polarized Raman spectroscopy. A remarkably strong anisotropy in properties of aligned fMGs is observed. Moreover, VA-fMG TIMs are prepared by constructing a three-dimensional vertically aligned functionalized multilayer graphene architecture between contact Silicon/Silicon surfaces with pure Indium as a metallic medium. Compared with their counterpart from recumbent A-fMGs, VA-fMG TIMs have significantly higher equivalent thermal conductivity and lower contact thermal resistance. Electrical and thermal conductivities of polymer composite are also greatly interested here. Previous researches indicated that filler loading, morphology of fillers, and chemical bonding across filler/polymer interfaces have significant influence on electrical/thermal conductivity of polymer composite. Therefore, the research also pays substantial attention to these issues. First, electrical resistivity of CPCs is highly sensitive on volume or weight ratio (filler loading) of conductive fillers in polymer matrix, especially when filler loading is close to percolation threshold (pc). Thermal oxidation aging usually can cause a significant weight loss of polymer matrix in a CPC system, resulting in a filler loading change which can be exhibited by a prompt alteration in electrical resistivity of CPCs. Here, the phenomena are applied as approach for in-situ monitoring thermal oxidation status of polymeric materials is developed based on an electrical sensors based on conductive polymeric composites (CPCs). The study developed a model for electrical resistivity of sensors from the CPCs as a function of aging time at constant aging temperature, which is in a good agreement with a Boltzmann-Sigmoidal equation. Based on the finding, the sensors show their capability of in-situ in-situ monitor and estimate aging status of polymeric components by a fast and convenient electrical resistance measurement. Second, interfacial issues related to these thermal conductive fillers are systemically studied. On the one hand, the study focuses on relationship between morphology of h-BN particles and thermal conductivity of their epoxy composites. It is found that spherical-agglomeration of h-BN particles can significantly enhance thermal conductivity of epoxy resin, compared with dispersed h-BN plates, by substantially reducing specific interfacial area between h-BN and epoxy resin. On the other hand, surface of high thermal conductive fillers such as SiC particles and MWNTs are successfully functionalized, which makes their surface reactive with bisphenol A diglycidyl ether and able to form chemical bonding between fillers and epoxy resin. By this means, thermal conductivity of polymer composites is found to be significantly enhanced compared with control samples, indicating the interfacial chemical bonding across interface between thermal conductive fillers and polymer matrix can promote heat dissipation in polymeric composites. The finding can benefit a development of high thermal conductive polymer composites by interfacial chemical bonding enhancement to meet the demanding requirements in current fine pitch and Cu/low k technology.
248

Etude des spécificités du frittage par micro-ondes de poudres d'alumine alpha et gamma / Investigation of the specific aspects of microwave sintering in alpha and gamma alumina powders

Croquesel, Jérémy 21 January 2015 (has links)
Pour répondre aux nouvelles contraintes économiques et environnementales auxquelles l'industrie doit faire face aujourd'hui, des techniques de frittage rapide se développent pour la fabrication des céramiques. Parmi elles, une technique prometteuse est le frittage par micro-ondes dans laquelle le champ électromagnétique à l'origine du chauffage pourrait permettre d'obtenir des microstructures innovantes, tout en réduisant la température, le temps de cycle et la consommation énergétique. Pour expliquer le comportement particulier des poudres en présence des micro-ondes, différentes théories prévoyant des effets thermiques ou non-thermiques ont été proposées. L'existence même de ces effets n'a cependant toujours pas été démontrée de façon sûre, notamment à cause des limites des dispositifs expérimentaux qui ne permettent pas une comparaison pertinente du frittage micro-ondes avec le frittage conventionnel. Dans ce contexte, les travaux réalisés pendant cette thèse, dans le cadre du projet ANR Fµrnace, ont été consacrés à la mise en évidence et à la compréhension de l'influence du champ électromagnétique sur les mécanismes responsables de la densification et de l'évolution microstructurale de poudres céramiques. Une forte attention a été portée au développement technologique de la cavité de chauffage micro-ondes monomode utilisée dans nos recherches. Le procédé a été entièrement automatisé et équipé de divers systèmes de contrôle de la température et du retrait des échantillons pour que les résultats obtenus puissent être comparés de façon incontestable avec ceux issus d'essais de frittage conventionnel. Des simulations numériques ont été réalisées pour améliorer la compréhension de la propagation du champ électromagnétique et de son interaction avec les éléments introduits au sein de la cavité micro-ondes. Un matériau de référence, l'alumine, a été choisi et l'influence de certaines caractéristiques des poudres (surface spécifique, présence de dopants, transformation de phase) sur les cinétiques de densification et l'évolution microstructurale a été étudiée. Les résultats obtenus ont permis d'identifier des effets spécifiques des micro-ondes sur les mécanismes de diffusion responsables de la densification et de la croissance granulaire. Ces effets se produisent principalement pendant les stades initial et intermédiaire du frittage, ainsi que pendant la transformation de phase de poudres de transition et ont été attribués à une force de type pondéromotrice déjà proposée dans la littérature. L'utilisation de cette technique de frittage n'a cependant pas permis d'obtenir des alumines avec des microstructures plus performantes que celles issues du frittage conventionnel. / To meet the new economic and environmental constraints that the industry faces today, fast sintering processes are developed for the fabrication of ceramics. Among them, a promising technique is microwave sintering, in which the electromagnetic field at the origin of heating could be used to obtain innovative microstructures, while reducing sintering temperature, cycle time and energy consumption. To explain the particular behavior of powders under microwaves, different hypotheses related with thermal or non-thermal effects have been proposed in the literature. These effects, however, has not really been demonstrated for the moment, especially because of the limits of experimental devices that do not allow for a meaningful comparison of microwave sintering with conventional sintering. In this context, the work performed during this thesis in the framework of FμRNACE ANR project has been dedicated to identifying and understanding the influence of the electromagnetic field on the mechanisms of densification and microstructure changes in ceramic powders. High attention has been paid to the technological development of the single-mode microwave cavity used in our research. The heating process has been fully automated and instrumented with various equipments allowing for temperature and sample shrinkage measurement. The aim was to ensure direct and reliable comparison of microwave sintering data with those resulting from conventional sintering. Numerical simulation has been conducted to improve our understanding of the propagation of the electromagnetic field and its interaction with the components introduced in the microwave cavity. Alumina has been chosen as a reference material and the influence of several features of the powders (specific surface area, doping elements, phase transformation) on densification kinetics and microstructure changes has been studied. The results have identified specific effects of microwaves on the mechanisms controlling densification and grain growth. These effects occur essentially during the initial and intermediate stages of sintering and during the phase transformation of transition powders. They have been attributed to the ponderomotive force as already proposed in the literature. However the use of microwaves as a heating mode does not permit obtaining alumina with better microstructures than those resulting from conventional sintering.
249

Enhanced Raman signatures on copper based-materials / Etude de l’exaltation du signal Raman sur des nanomatériaux à base de cuivre

Cakir, Deniz 20 December 2017 (has links)
Cette thèse s’intéresse à l’exaltation du signal Raman sur des nanomatériaux cuivrés. Des couches minces d’épaisseur de cuivre variable ont été préparées et étudiées avant et après oxydation dans l’air à des températures inférieures à 200°C. Leur microstructure a été caractérisée par microscopies MEB et AFM. L’épaisseur des couches de cuivre et d’oxyde cuivreux a été mesurée localement par ces techniques, et comparée aux résultats d’études spectroscopiques par ellipsométrie et absorption UV-visible. Une modélisation des spectres d’absorption UV-visible, basée sur des calculs d’interférences à partir des équations de Fresnel, permet de déterminer à la fois les épaisseurs des couches et leurs indices de réfraction. L’étude Raman de ces échantillons permet de discuter et de quantifier le phénomène d’exaltation Raman par interférences (IERS). D’autres échantillons nanostructurés à base de cuivre, recouverts de graphène monofeuillet, ont été étudiés. Les variations d’intensité Raman du graphène sont discutées en termes d’IERS. La dernière partie du manuscrit est consacrée à l’étude du signal SERS de molécules déposées sur des substrats commerciaux nanostructurés d’or, et à leur évolution après avoir recouvert ces substrats d’une couche mince de cuivre. / This thesis studies the enhanced Raman signatures on copper based materials. Thin copper films were prepared and studied before and after thermal oxidation in air, under 200 °C. Their microstructure has been characterized by SEM and AFM. The thickness of the copper and cuprous oxide films have been characterized locally by those techniques, and by ellipsometry and UV-visible absorption spectroscopic techniques. A modeling of the UV-visible spectra has been performed based on interference calculations using Fresnel equations, allowing the determination of both the thicknesses and the refractive indices of the films. Raman study of these samples allows a quantification of the interference enhanced Raman phenomenon (IERS). Other copper nanostructured samples covered with single layer graphene (SLG) have been studied, and The Raman intensity of SLG discussed in terms of IERS. The last part of the manuscript is dedicated to SERS studies of molecules deposited on nanostructured golden commercial substrates and to the evolution of the Raman the signal after covering these substrates with a thin copper layer.
250

Fate of Engineered Nanomaterials in Wastewater Treatment Plants

January 2011 (has links)
abstract: As the use of engineered nanomaterials (ENMs) in consumer products becomes more common, the amount of ENMs entering wastewater treatment plants (WWTPs) increases. Investigating the fate of ENMs in WWTPs is critical for risk assessment and pollution control. The objectives of this dissertation were to (1) quantify and characterize titanium (Ti) in full-scale wastewater treatment plants, (2) quantify sorption of different ENMs to wastewater biomass in laboratory-scale batch reactors, (3) evaluate the use of a standard, soluble-pollutant sorption test method for quantifying ENM interaction with wastewater biomass, and (4) develop a mechanistic model of a biological wastewater treatment reactor to serve as the basis for modeling nanomaterial fate in WWTPs. Using titanium (Ti) as a model material for the fate of ENMs in WWTPs, Ti concentrations were measured in 10 municipal WWTPs. Ti concentrations in pant influent ranged from 181 to 3000 µg/L, and more than 96% of Ti was removed, with effluent Ti concentrations being less than 25 µg/L. Ti removed from wastewater accumulated in solids at concentrations ranging from 1 to 6 µg Ti/mg solids. Using transmission electron microscopy, spherical titanium oxide nanoparticles with diameters ranging from 4 to 30 nm were found in WWTP effluents, evidence that some nanoscale particles will pass through WWTPs and enter aquatic systems. Batch experiments were conducted to quantify sorption of different ENM types to activated sludge. Percentages of sorption to 400 mg TSS/L biomass ranged from about 10 to 90%, depending on the ENM material and functionalization. Natural organic matter, surfactants, and proteins had a stabilizing effect on most of the ENMs tested. The United States Environmental Protection Agency's standard sorption testing method (OPPTS 835.1110) used for soluble compounds was found to be inapplicable to ENMs, as freeze-dried activated sludge transforms ENMs into stable particles in suspension. In conjunction with experiments, we created a mechanistic model of the microbiological processes in membrane bioreactors to predict MBR, extended and modified this model to predict the fate of soluble micropollutants, and then discussed how the micropollutant fate model could be used to predict the fate of nanomaterials in wastewater treatment plants. / Dissertation/Thesis / Ph.D. Civil and Environmental Engineering 2011

Page generated in 0.0956 seconds