391 |
Imidazolium Ionic Liquids as Multifunctional Solvents, Ligands, and Reducing Agents for Noble Metal Deposition onto Well-Defined Heterostructures and the Effect of Synthetic History on Catalytic PerformanceBallentine, Michael Drake 01 April 2018 (has links)
1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM]Tf2N) was investigated as a multifunctional solvent, ligand, and reducing agent for platinum deposition onto well-defined CdSe@CdS nanorods. Platinum deposition was carried out thermally and photochemically using Pt(acac)2 as the metal precursor. Thermal deposition was investigated in [BMIM]Tf2N with and without addition of a sacrificial reducing agent, and product topology was compared with the products obtained from polyol reduction using 1,2-hexadecanediol, oleic acid, and oleylamine in diphenyl ether. Photochemically induced platinum deposition was carried out at room temperature in [BMIM]Tf2N, and product topology was compared with the photodeposition products obtained from a toluene dispersion. Thermal deposition of platinum in ionic liquid showed rods of broken morphology and small platinum nanoparticles speckled across the rods’ surface, while photodeposition of platinum exhibited particles decorated throughout the nanorod surface but larger in size than those exhibited by thermal means. Photocatalytic
reduction of methylene blue was studied using these Pt-CdSe@CdS heterostructured nanoparticles, and catalytic performance was correlated with topology and synthetic history. Initial findings of catalytic performance suggest that there in an advantage of depositing platinum nanoparticles onto the CdSe@CdS in the ionic liquid system. Methylene blue dye was degraded using each system and the results show and there is an increased performance of the nanorods synthesized in the ionic system.
|
392 |
Solvation and Ion Specificity in Complex Media / Solvation et spécificité ionique dans les milieux complexesSpadina, Mario 24 June 2019 (has links)
Le but de cette thèse était de créer des modèles pour deux applications qui apparaissent couramment en chimie séparative, à savoir la séparation solide-liquide et la séparation liquide-liquide. L'avantage de la modélisation est manifeste dans les deux cas. L'étude fondamentale des propriétés des ions et de leur solvatation dans les milieux complexes, en tenant compte de façon simplifié des différents effets mis en jeu, nous a permis de construire un cadre qui utile aussi bien aux chimistes en laboratoire qu’aux ingénieurs lors de la conception des procédés. Nous avons adapté cette stratégie sur deux systèmes différents, qui peuvent tous deux être considérés comme complexes. Le premier système modèle pour étudier la séparation solide-liquide était des nanotubes de TiO2 dispersés dans une solution aqueuse. Ce système a été étudié au moyen de la Théorie de la Fonctionnelle de la Densité Classique couplée à une méthode de régulation de charge, au sein de l'ensemble Grand-Canonique. La méthode s'est avérée efficace pour établir la description complète des propriétés de charge des nanotubes de TiO2. Dans ce cas, nous nous sommes intéressés à obtenir la description de l'ion à l'intérieur des nanotubes chargés sous l'influence du champ électrique (créé par les nanotubes). Les calculs ont prédit des effets tels que la différence de charge de surface entre la surface externe et la surface interne, ou la violation de l'électroneutralité à l'intérieur des nanotubes. Il a été démontré que le modèle était en accord avec les données expérimentales. De plus, la méthode peut être utilisée directement pour prédire diverses techniques de titrage. Une simple généralisation de l'approche proposée permettra d'étudier l'efficacité d'adsorption réelle du procédé de séparation solide-liquide. Le second système modèle concerne l'étude du procédé d'extraction liquide-liquide et il comprend trois parties distinctes. Les trois parties ont été consacrées aux cas des extractants non ioniques, puis acides (échangeurs d'ions), et enfin aux mélanges synergiques d'extractants. Un modèle simple de thermodynamique statistique, dans lequel nous avons incorporé certains des concepts bien établis en chimie colloïdale, a fourni une approche de type matière molle pour calculer le processus à l'échelle de l'ingénieur. Nous avons développé une approche classique d'équilibres simples pour une compréhension plus large et plus intuitive de la formation des agrégats polydisperses dans l'extraction liquide-liquide. La principale conclusion présentée est que l’on doit proposer un nouveau paradigme pour la chimie : à l'équilibre, de nombreux agrégats de composition très différente mais similaires en énergie libre, coexistent. Avec la polydispersité obtenue, nous avons ainsi proposé un outil pour étudier un comportement plus "global" de l'extraction liquide-liquide. Cela nous a poussés à passer des considérations classiques d'isothermes d'extraction à celles plus précises des " cartes " d’extraction. Un grand soin a été apporté à l'étude de la synergie puisqu'il s'agit d'une important question depuis 60 ans dans la communauté scientifique et industrielle de la séparation. A notre connaissance, la première rationalisation quantitative de la synergie d’extraction a été proposée dans le cadre de cette thèse. Les effets sous-jacents des contrôles enthalpique et entropique sur la structuration des phases organiques ont été découplés et étudiés en détail. Nous espérons que cette thèse a démontré l'importance de la modélisation mésoscopique sur des exemples pratiques utilisés à la fois par les chimistes et les ingénieurs. / The object of this thesis was to create models for two applications which readily appear in separation chemistry, namely the solid-liquid and the liquid-liquid extractions. The benefit of modelling in both cases is twofold. Studying the fundamental properties of ions and their solvation properties in the complex media, and simplifying the expression for important effects, enables us to construct the framework which can be used by both chemists in the laboratory, as well as the chemical engineers in the process design. For two applications we adapted two different systems, both of which can be considered as complex. The model system to study the solid-liquid separation were TiO$_{mathrm{2}}$ nanotubes dispersed in the aqueous solution. This system was studied by the means of Classical Density Functional Theory coupled with the charge regulation method, within the Grand-canonical ensemble. Indeed, the method proved to be successful in establishing the full description of the charge properties of TiO$_{mathrm{2}}$ nanotubes. In this case, we were interested in obtaining the description of ion inside the charged nanotubes under influence by the electric field (exhibited by nanotubes). Calculations predicted effects such as the difference in surface charge between the outer and the inner surface, or the violation of electroneutrality inside the nanotubes. It was demonstrated that the model was in the agreement with the experimental data. Moreover, the method can be directly used to predict titration for various techniques. A simple generalization of the proposed approach can be used to study the actual adsorption efficiency of the solid-liquid separation process. The model system to study the liquid-liquid extraction process included three distinct parts. The three parts were devoted to the cases on non-ionic, acidic ion exchangers, and finally the synergistic mixtures of extractants. Simple bulk statistical thermodynamics model, in which we incorporated some of the well-established concepts in colloidal chemistry provided a soft-matter approach for the calculation of actual engineering-scale processes. Were have expanded a classical simple equilibria approach to broader, more intuitive polydisperse aggregates formation that underlines the liquid-liquid extraction. The key finding can be presented as a current opinion or newly-proposed paradigm: at equilibrium, many aggregates completely different in composition but similar in free energy coexist. With obtained polydispersity, we were equipped with a tool to study a more 'global' behavior of liquid-liquid extraction. This urged us to pass our considerations of historical extraction isotherms to extraction 'maps'. Great care was devoted to the study of synergy since it is a 60-year old ongoing question in the separation industrial and science community. To our best knowledge, the first quantitative rationalization total synergistic extraction was proposed within this thesis. Underlying effects of enthalpy and entropy control on the organic phase structuring were decoupled and studied in detail. Hopefully, this thesis demonstrated the importance of mesoscopic modelling to assist both chemists and chemical engineers in practical examples.
|
393 |
Non-invasive stem cell tracking using novel nanomaterials : in vitro and ex vivo studiesSweeney, Sean Kenneth 01 December 2012 (has links)
As research and clinical use of stem cell therapies progresses, it is becoming more evident that being able to visualize the stem cell transplant in vivo is of great benefit to the researcher or clinician. As a result, researchers are working to address this need. Our lab is collaborating to develop novel, multimodal nanomaterials, one with a core of mesoporous silica, and the other with a core of gadolinium oxide. Varying modifications have been made as needs arose. Human mesenchymal stem cells (MSCs) were isolated from bone marrow aspirates and confirmed to be positive for STRO-1, a common MSC marker. These cells were labeled with 125 μg/mL of varying nanoparticle types: gadolinium oxide, doped with 0.5%, 5%, or 10% europium for magnetic resonance imaging (MRI) and luminescence microscopy, and mesoporous silica nanoparticles (MSN), loaded with fluorescein for fluorescent microscopy and capped with either iron oxide or gold for MRI and computed tomography (CT), respectively. We studied the kinetics of MSN uptake by MSCs for 10 days using fluorescent microscopy. In ex vivo studies, we used the 4.7 Tesla Varian® small animal MRI scanner to detect 5*10⁴ cells labeled with ferrite-capped MSN particles and injected into the brain, lung, and heart of a perfusion-fixed mouse. Micro-CT was used to detect 1.7*10⁶ cells labeled with gold-capped MSN and delivered to the lungs via the trachea in a perfusion-fixed mouse. The results of this research are preliminary to in vivo testing using animal models as a proof-of-concept for these potentially marketable particles.
|
394 |
In situ and 3D environmental transmission electron microscopy of Pd-Al2O3 nano catalysts : Fast tomography with applications to other catalytic systems in operando conditions and to electron beam sensitive nanomaterials / Microscopie électronique à transmission in situ et 3d environnementale de nano-catalyseurs Pd-Al2O3 : Tomographie rapide avec applications à d'autres systèmes catalytiques dans des conditions d'exploitation et à des nanomatériaux sensibles au faisceau d'électronsKoneti, Siddardha 05 December 2017 (has links)
Au début du XXIème siècle, la Microscopie Electronique à Transmission en mode Environnemental (ETEM) est devenue l’une des techniques les plus fiables de caractérisation de nanomatériaux dans des conditions simulant leur vie réelle. L’ETEM est maintenant en mesure de suivre l’évolution dynamique des nanomatériaux dans des conditions variables comme l’exposition à des températures élevées, l’observation en milieux liquide ou gazeux à diverses pressions. Parmi différents domaines de recherche et développement concernés, la catalyse peut bénéficier de manière significative des avancées permises par la microscopie électronique environnementale. Cette thèse, dédiée au développement de l’ETEM au laboratoire MATEIS, a commencé avec l’étude du système catalytique Pd-alumine. Les nanoparticules de Pd déposées sur alpha -Al2O3 et delta-Al2O3 sont très utilisées en physicochimie avec un impact environnemental important : en particulier dans le domaine de l’hydrogénation sélective, pour la synthèse de polymères ou l’hydrogénation de CO2 pour la production de méthane. Nous avons tout d’abord effectué des analyses 2D aux différentes étapes du processus de synthèse du catalyseur : imprégnation du précurseur, séchage et chauffage pour la calcination dans l’air à la pression atmosphérique. La motivation de cette approche a été de comparer des analyses post mortem avec des traitements en ETEM où l’évolution des nanoparticules peut être mesurée in situ et pas seulement « avant » et « après ». De manière générale, les études faites en ETEM en 2D donnent un aperçu limité sur la morphologie des objets et la distribution spatiale des nanoparticules supportées. Nous avons développé une nouvelle approche d’acquisition rapide pour collecter dans des temps très courts des séries d’images sous différents angles de vue pour la tomographie électronique, la rapidité de cette acquisition étant un prérequis pour appréhender correctement la morphologie d’un nano-système au cours de son évolution dynamique in situ. La technique a ensuite été utilisée pour l’étude de plusieurs systèmes où une acquisition tridimensionnelle rapide est indispensable, notamment sur un sujet concernant un enjeu sociétal important, la dépollution des moteurs diesel : l’oxydation de la suie a été étudiée in situ sur des supports à base de zircone entre 400 et 600°C et une pression de 2 mbar d’oxygène à différents degrés de combustion, ce qui a permis d’extraire des données cinétiques telle que l’énergie d’activation du processus. La tomographie électronique rapide a été également appliquée à des matériaux sensibles au faisceau électronique, comme des nanocomposites polymères et des objets biologiques, montrant le large spectre d’applications possibles pour cette technique, qui constitue un pas important vers la caractérisation operando 3D de nanomatériaux en temps réel. / In the beginning of the XXIst century, Environmental Transmission Electron Microscopy has become one of the reliable characterization techniques of nanomaterials in conditions mimicking their real life. ETEM is now able to follow the dynamic evolution of nanomaterials under various conditions like high temperature, liquid or various gas pressures. Among various fields of research, catalysis can benefit significantly from Environmental Microscopy. This contribution starts with the study of the Palladium-Alumina catalytic system. Pd nanoparticles supported by α-Al2O3 and δ-Al2O3 are of an important physicochemical and environmental interest, particularly in the field of selective hydrogenation in petrochemistry, for the synthesis of polymers or CO2 hydrogenation for methane production. We first performed 2D analyses at different steps of the synthesis process, then the same synthesis steps were performed under in situ conditions. The motivation of this approach was to compare post mortem treatments with ETEM observations. In general, 2D data provide limited insights on, for example, the morphology and position of supported nanoparticles. We have then developed a new fast acquisition approach to collect tomographic tilt series in very short times, enabling to reconstruct nano-systems in 3D during their dynamical evolution. Taking advantage of this approach, we have determined the activation energy for soot combustion on YSZ oxidation catalysts for diesel motors from volumetric data extracted from in situ experiments. Fast electron tomography was also applied to electron beam sensitive materials, like polymer nanocomposites and biological materials, showing the wide spectrum of possible applications for rapid 3D characterization of nanomaterials.
|
395 |
GaN Based Nanomaterials Fabrication with Anodic Aluminium Oxide by MOCVDWang, Yadong, Sander, Melissa, Peng, Chen, Chua, Soo-Jin, Fonstad, Clifton G. Jr. 01 1900 (has links)
A highly self-ordered hexagonal array of cylindrical pores has been fabricated by anodizing a thin film of Al on substrate and subsequent growth of GaN and InGaN in these nanoholes has been performed. This AAO template-based synthesis method provides a low cost process to fabricate GaN-based nanomaterials fabrication. / Singapore-MIT Alliance (SMA)
|
396 |
Functionalization of Nanocarbons for Composite, Biomedical and Sensor ApplicationsKuznetsov, Oleksandr 24 July 2013 (has links)
New derivatives of carbon nanostructures: nanotubes, nano-onions and nanocrystalline diamonds were obtained through fluorination and subsequent functionalization with sucrose. Chemically modified nanocarbons show high solubility in water, ethanol, DMF and can be used as biomaterials for medical applications. It was demonstrated that sucrose functionalized nanostructures can find applications in nanocomposites due to improved dispersion enabled by polyol functional groups. Additionally, pristine and chemically derivatized carbon nanotubes were studied as nanofillers in epoxy composites. Carbon nanotubes tailored with amino functionalities demonstrated better dispersion and crosslinking with epoxy polymer yielding improved tensile strength and elastic properties of nanocomposites.
Reductive functionalization of nanocarbons, also known as Billups reaction, is a powerful method to yield nanomaterials with high degree of surface functionalization. In this method, nanocarbon salts prepared by treatment with lithium or sodium in liquid ammonia react readily with alkyl and aryl halides as well as bromo carboxylic acids. Functionalized materials are soluble in various organic or aqueous solvents. Water soluble nanodiamond derivatives were also synthesized by reductive functionalization of annealed nanodiamonds. Nanodiamond heat pretreatment was necessary to yield surface graphene layers and facilitate electron transfer from reducing agent to the surface of nanoparticles.
Other carbon materials such as activated carbon and anthracite coal were also derivatized using reductive functionalization to yield water soluble activated carbon and partially soluble in organic solvents anthracite. It was shown that activated carbon can be effectively functionalized by Billups method. New derivatives of activated carbon can improve water treatment targeting specific impurities and bio active contaminants.
It was demonstrated that functionalized carbon nanotubes are suitable for real time radiation measurements. Radiation sensor incorporating derivatized carbon nanotubes is lightweight and reusable.
In summary, functionalization of carbon nanomaterials opens new avenues for processing and applications ranging from biomedicine to radiation sensing in space.
|
397 |
Large-Scale Patterned Oxide Nanostructures: Fabrication, Characterization and ApplicationsWang, Xudong 28 November 2005 (has links)
Nanotechnology is experiencing a flourishing development in a variety of fields covering all of the areas from science to engineering and to biology. As an active field in nanotechnology, the work presented in this dissertation is mostly focused on the fundamental study about the fabrication and assembly of functional oxide nanostructures. In particular, Zinc Oxide, one of the most important functional semiconducting materials, is the core objective of this research, from the controlled growth of nanoscale building blocks to understanding their properties and to how to organize these building blocks. Thermal evaporation process based on a single-zone tube furnace has been employed for synthesizing a range of 1D nanostructures. By controlling the experimental conditions, different morphologies, such as ultra-small ZnO nanobelts, mesoporous ZnO nanowires and core-shell nanowire were achieved. In order to pattern the nanostructures, a large-scale highly-ordered nanobowl structure based on the self-assembly of submicron spheres was created and utilized as patterning template. The growth and patterning techniques were thereafter integrated for aligning and patterning of ZnO nanowires. The aligning mechanisms and growth conditions were thoroughly studied so as to achieve a systematic control over the morphology, distribution and density. The related electronic and electromechanical properties of the aligned ZnO nanowires were investigated. The feasibility of some potential applications, such as photonic crystals, solar cells and sensor arrays, has also been studied. This research may set a foundation for many industrial applications from controlled synthesis to nanomanufacturing.
|
398 |
Exploring the Synthesis and Characterization of Nanoenergetic Materials from Sol-Gel ChemistryWalker, Jeremy D. 08 January 2007 (has links)
Nanoenergetic composite materials have been synthesized by a sol-gel chemical process where the addition of a weak base molecule induces the gelation of a hydrated metal salt solution. A proposed proton scavenging mechanism, where a weak base molecule extracts a proton from the coordination sphere of the hydrated iron (III) complex in the gelation process to form iron (III) oxide/hydroxide, FeIIIxOyHz, has been confirmed for the weak base propylene oxide (PO), a 1,2 epoxide, as well as for the weak bases tetrahydrofuran (THF), a 1,4 epoxide, and pyridine, a heterocyclic nitrogen-containing compound. THF follows a similar mechanism as PO; the epoxide extracts a proton from the coordination sphere of the hydrated iron complex forming a protonated epoxide which then undergoes irreversible ring-opening after reaction with a nucleophile in solution. Pyridine also extracts a proton from the hydrated metal complex, however, the stable six-membered molecule has low associated ring strain and does not endure ring-opening.
Fe2O3/Al energetic systems were synthesized from the epoxides PO, trimethylene oxide (TMO) and 3,3 dimethyl oxetane (DMO). Surface area analysis of the synthesized matrices shows a direct correlation between the surface area of the iron (III) oxide matrix and the quantified exothermic heat of reaction of the nano-scaled aluminum-containing energetic material due to the magnitude of the interfacial surface area contact between the iron (III) oxide matrix and the aluminum particles. The Fe2O3(PO)/Al systems possess the highest heat of reaction values due to the oxide interfacial surface area available for contact with the aluminum particles. Also, reactions containing nano-scale aluminum react differently than those containing micron-scale aluminum.
RuO2/Al energetic systems behave differently dependent on the atmosphere the sample is heated. Heating the RuO2/Al samples in an inert atmosphere results in the complete reduction of the ruthenium oxide matrix to Ru(0) before reaction with the aluminum particles, resulting in the exothermic formation of RuxAly intermetallics, with the stoichiometry dependent on the initial Ru:Al concentration. However, heating the samples in an oxygen-rich atmosphere results in an exothermic reaction between RuO2 and Al.
|
399 |
One-dimensional zinc oxide nanomaterials synthesis and photovoltaic applicationsWeintraub, Benjamin A. 20 May 2010 (has links)
As humanly engineered materials systems approach the atomic scale, top-down manufacturing approaches breakdown and following nature's example, bottom-up or self-assembly methods have the potential to emerge as the dominant paradigm. Synthesis of one-dimensional nanomaterials takes advantage of such self-assembly manufacturing
techniques, but until now most efforts have relied on high temperature vapor phase schemes which are limited in scalability and compatibility with organic materials. The solution-phase approach is an attractive low temperature alternative to overcome these
shortcomings. To this end, this thesis is a study of the rationale solution-phase synthesis
of ZnO nanowires and applications in photovoltaics.
The following thesis goals have been achieved: rationale synthesis of a single
ZnO nanowire on a polymer substrate without seeding, design of a wafer-scale technique
to control ZnO nanowire array density using layer-by-layer polymers, determination of
optimal nanowire field emitter density to maximize the field enhancement factor, design
of bridged nanowires across metal electrodes to order to circumvent post-synthesis manipulation steps, electrical characterization of bridged nanowires, rationale solution-phase synthesis of long ZnO nanowires on optical fibers, fabrication of ZnO nanowire dye-sensitized solar cells on optical fibers, electrical and optical characterization of solar cell devices, comparison studies of 2-D versus 3-D nanowire dye-sensitized solar cell devices, and achievement of 6-fold solar cell power conversion efficiency enhancement using a 3-D approach. The thesis results have implications in nanomanufacturing scale-up and next generation photovoltaics.
|
400 |
Characterizing, imaging, and quantifying the environmental behavior and biological interactions of metal-based nanoparticlesZhang, Wen 24 June 2011 (has links)
Due to the rapid expansion of nanotechnology and the increasing applications of nanomaterials under production and development, it is essential evaluate the potential impacts on human health, ecosystems and the environment. This study is specifically focused on the interactions between metal-based nanoparticles (NPs) and target cells, aiming at exploration of the fundamental knowledge essentially useful for understanding nanotoxicity and its connections with particle properties. The whole structure of this study can be divided into three levels: the first level is to quantitatively understand physicochemical properties of NPs of interest and their dynamic changes under varying environmental conditions. The second level is to evaluate the biological interactions of representative NPs with a specific focus on the size-dependent adsorption processes, interfacial forces, cellular disruption, and membrane damages. The third level is to develop effective, accurate, and valid tools based on atomic force microscopy (AFM) to characterize NPs in terms of the nanoscale hydrophobicity and the nanoscale electric properties, which are most relevant and important properties in the bio-nano interactions. Overall, this study systematically investigated the kinetic environmental behaviors, biological interactions, and unique nano-properties of metal-based NPs, which should be of interest to people in application and implication of nanotechnology.
|
Page generated in 0.0986 seconds