Spelling suggestions: "subject:"nanoparticles.""
181 |
Enabling solid lipid nanoparticle drug delivery technology by investigating improved production techniquesTriplett, Michael David, II January 2004 (has links)
No description available.
|
182 |
Optical scattering from nanoparticle aggregatesTravis, Kort Alan 09 February 2011 (has links)
Nanometer-scale particles of the noble metals have been used for decades as contrast enhancement agents in electron microscopy. Over the past several years it has been demonstrated that these particles also function as excellent contrast agents for optical imaging techniques. The resonant optical scattering they exhibit enables scattering cross sections that may be many orders of magnitude greater than the analogous efficiency factor for fluorescent dye molecules. Biologically relevant labeling with nanoparticles generally results in aggregates containing a few to several tens of particles. The electrodynamic coupling between particles in these aggregates produces observable shifts in the resonance-scattering spectrum. This dissertation provides a theoretical analysis of the scattering from nanoparticle aggregates. The key objectives are to describe this scattering behavior qualitatively and to provide numerical codes usable for modeling its application to biomedical engineering. Considerations of the lowest-order dipole-dipole coupling lead to simple qualitative predictions of the behavior of the spectral properties of the optical cross sections as they depend on number of particles, inter-particle spacing, and aggregate aspect ratio. More comprehensive analysis using the multiple-particle T-matrix formalism allows the elaboration of more subtle cross-section spectral features depending on the interactions of the electrodynamic collective-modes of the aggregate, of individual-particle modes, and of modes associated with groups of particles within the aggregate sub-structure. In combination these analyses and the supporting numerical code-base provide a unified electrodynamic approach which facilitates interpretation of experimental cross section spectra, guides the design of new biophysical experiments using nanoparticle aggregates, and enables optimal fabrication of nanoparticle structures for biophysical applications. / text
|
183 |
A Laboratory Study of the Stability and Flow of Nanoparticle Suspensions through Porous Media using Magnetic TechniquesKhan, Shahjahan Unknown Date
No description available.
|
184 |
Revealing the Magic in Silver Magic Number Clusters: The Development of Size-Evolutionary Patterns for Monolayer Coated Silver-Thiolate NanoclustersConn, Brian E. January 2016 (has links)
No description available.
|
185 |
Comparative in vitro estimates of inhalation toxicity of selected nanoparticlesDhakal, Kiran January 1900 (has links)
Master of Public Health / Department of Diagnostic Medicine/Pathobiology / John A. Pickrell / Airway inflammation is characterized by the release of pro-inflammatory cytokines (IL-6) and chemokine (IL-8) from airway epithelial cells. To screen for the potential inhalation toxicity as inflammation, we tested exposure of metal oxide nanoparticles (NPs)-Titanium dioxide, Magnesium oxide, FastAct and Titanium Silicon Oxide-Manganese (TSO-Mn)-Aerogel to BEAS 2B human bronchial epithelial cells. A monolayer of cells having 80 – 90% confluence was treated with different concentrations of the NPs and feedlot dust as positive control for inflammatory processes. Releases of IL-6 and IL-8 into the culture supernatant fluid were measured by sandwich enzyme-linked immunoassay (ELISA). Characterization of NPs such as solubility and agglomeration in cell culture media were carried out to predict the effect of these properties in cellular responses. Feedlot dust increased the release of both IL-6 and IL-8 by 3 to >5 fold, suggesting an inflammatory effect while NPs did not show any effect either at increasing the dose or duration of the incubation with cell. The NPs at higher doses reduced the total IL-6 and IL-8 released, suggesting that the NPs may have bound with the cytokine and chemokine or somehow interfered with their function. The inert activity of NPs was further investigated by inspecting cell morphology, counting viable cells and assessing mitochondrial membrane potential. Concentrations at 1000 mg/L of TiO2 and 250 mg/L TSO-Mn-Aerogel could apparently limit lung epithelial cell multiplication by partially occupying the intercellular spaces, qualitatively increasing the number of cell pores and resulting in less recovered cells after 12 hours of incubation. Cells exposed to feedlot dust and titanium NPs were less viable as indicated by propidium iodide staining, but cells exposed to TSO-Mn-aerogel were more apoptotic as indicated JC-1 staining. These changes occurred at projected inhalation exposure levels > 40-100 fold above the nuisance dust level for TiO2 and permissible exposure limit for Manganese. No MgO exposures reduced apparently recovered cells to < 50% as indicated by manual hemocytometer counts (+ 15-25% variability). The lack of toxicity was most likely reflected from the high MgO solubility in the incubating media, and the relative non-toxicity of MgO.
|
186 |
Solubility phase transition behavior of gold nanoparticles in colloidal solutionYan, Hao January 1900 (has links)
Doctor of Philosophy / Department of Physics / Christopher M. Sorensen / Nano-size materials are new materials in an intermediate state between the bulk and atomic or molecular states. Nanoparticles in colloidal solution and their assemblies have the great attention of researchers to investigate the novel fundamental properties and numerous applications. In this dissertation, we investigated the solubility phase transition behavior of gold nanoparticles in colloidal solution.
We used the nearly monodisperse gold nanoparticles synthesized by either the inverse micelle or the solvated metal atom dispersion methods followed by digestive ripening. The gold nanoparticles were ligated with alkyl chains, which were dodecanethiol, decanethiol, or octanethiol for individual samples. They dispersed in toluene or t-butyl toluene like large molecules at room temperature. In analogy to molecular solutions, the colloidal solution had thermally reversible phase transitions between a dissolved phase of dispersed single nanoparticles and dispersed-aggregation co-existing phase. A more polar solvent, 2-butanone, was added to the colloidal solution for changing the solubility of gold nanoparticles and adjusting the phase transition temperatures to accessible temperatures. Superclusters formed by the nanoparticles when the colloidal solutions were quenched from a one-phase regime at high temperature to a two-phase regime at low temperature. Solubility phase diagrams were obtained for gold nanoparticles with different ligands in the mixtures of different ratios of 2-butanone and toluene or t-butyl toluene. The explanation from classical ideal solution theory gave the fusion enthalpy of superclusters.
Temperature quenches from the one-phase to the two-phase regime yielded superclusters of the nanoparticle solid phase with sizes that depended on the quench depth. Classical nucleation theory was used to describe these sizes using a relative small value of the surface tension for the nanoparticle solid phase. This value is consistent with molecule size scaling of the surface tension. In total these results show that the solubility behavior of nanoparticles in colloidal solution is similar to the behavior in molecular solutions.
|
187 |
Serum protein acidic and rich in cysteine (SPARC) as a prognostic marker in soft tissue sarcomasMorgan, Sherif, Nagle, Raymond, Cranmer, Lee January 2014 (has links)
BACKGROUND:Serum protein acidic and rich in cysteine (SPARC) is a matricellular secreted glycoprotein that performs several cellular functions and has been implicated in tumorigenesis in a variety of tumor types. The chemotherapeutic agent nanoparticle albumin-encapsulated (NAB)-paclitaxel has been postulated to exploit SPARC expression to target neoplastic cells. SPARC's role, and potentially the role of NAB-paclitaxel, in the highly heterogeneous class of soft-tissue sarcomas (STS) has not been investigated. Our objective was to explore the pattern of SPARC expression and its prognostic significance in STS.METHODS:27 tissue specimens representing various STS histologies were stained for SPARC expression by immunohistochemistry (IHC). Staining intensity was scored blindly. Survival was determined from patients' medical records and analyzed using Kaplan-Meier and log-rank with respect to SPARC expression level.RESULTS:Elevated SPARC expression was observed in 15/27 (56%) specimens. Overall patient survival segregated strongly based on levels of SPARC expression. Patients who expressed low-to-moderate levels of SPARC exhibited median survival of 22.1months, while the median survival of patients with moderate-to-high expression levels was 4.4months (log rank / p=0.0016).CONCLUSIONS:SPARC expression is elevated in a significant proportion of STS specimens analyzed in this study, but it does not appear to correlate with specific STS histologies. Given our limited sample size, we cannot draw definitive conclusions regarding association of SPARC with STS subtype. Overall survival segregates strongly by degree of SPARC expression, with elevated expression being adverse. If validated in a larger study, our results suggest that trials in STS with agents potentially targeting SPARC, such as NAB-paclitaxel, should be stratified by SPARC expression level.
|
188 |
Electrostatic Coating with Charge-Compensated Ligandless Copper NanoparticlesHubbard, Lance Rex January 2016 (has links)
A nonaqueous electroless deposition (ELD) coating process that uses a charge compensator in lieu of a ligand or complexing agent is presented. Si(100) coupons were hydroxylated using a sulfuric acid-hydrogen peroxide mixture (SPM or piranha). The surface was terminated with an amine group by immersion in a 5 mM solution of (3-aminopropyl)-trimethoxysilane (APTMS) in methanol followed by a 150°C anneal. Metal films were deposited by suspending samples in a bath made by dissolving Cu(II) chloride in ethylene glycol, which also served as the reducing agent, and adding 1-butyl-3-methylimidazolium tetrafluoroborate as a charge compensator. Annealing the coupons at 200°C in nitrogen promoted the formation of an electrically conductive thin film. Four-point probe measurements of the films yielded electrical conductivities in the range 10⁶-10⁷ S/m (10-80% of bulk conductivity). Electron microscopy images of the coated substrates showed a layer structure consisting of nanoparticles. The Cu particle core-ion shell complex is attracted to the positively charged amine groups at high pH depositing a thin metal particle film that is both continuous and conformal. With increasing ionic liquid concentration, film morphology changes from conformal films to discrete islands. In the ionic liquid concentration range from 2.0-2.5 mM, the metal films exhibit increased optical absorbance, luminescence and electrical conductivity. The film properties are correlated to interparticle interactions with electron imagery and spectroscopic ellipsometry. Lastly, a thin metal film was deposited that is both continuous and cohesive on the walls and floor of 5-10X aspect ratio trenches and vias.
|
189 |
NANOPARTICLE BEHAVIOR IN BIOLOGICAL GELS AND BIOFLUIDS: THE IMPACT OF INTERACTIONS WITH CHARGED BIOGELS AND THE FORMATION OF PROTEIN CORONAS ON NANOPARTICLESZhang, Xiaolu 01 January 2015 (has links)
With the rapid growth of nanotechnology, situations where nanomaterials will interact with biological systems will unquestionably grow. Therefore, it is increasingly understood that interactions between nanomaterials and biological environments will play an essential role in nanomedicine. Biological polymer networks, including mucus and the extracellular matrix, serve as a filter for the exchange of molecules and nanoparticles. Such polymer networks are complex and heterogeneous hydrogel environments that regulate transport processes through finely tuned particle-network interactions. In chapters 3 and 4, we investigate the role of electrostatics on the basic mechanisms governing the diffusion of charged molecules inside model polymer networks by using fluorescence correlation spectroscopy (FCS). In chapter 3, we show that particle transport of charged probe molecules in charged hydrogels is highly asymmetric and that the filtering capability of the gel is sensitive to the solution ionic strength. Brownian dynamics simulations are in quantitative agreement with our experimental result. In chapter 4, we focus on hyperbranched cationic dendrimer macromolecules (polyamidoamine, PAMAM) which differ from probes in size, charge density and chain flexibilities. Our results show PAMAM has strongly reduced mobility in like charge gels and greatly enhanced apparent diffusivity in oppositely charged gels. Further studies with salt suggest that the oppositely charged polymer network acts as a giant counterion enhancing the mobility of PAMAM by changing its conformation to a more compacted state.
Due to their large surface areas, nanomaterials in biological fluids are modified by adsorption of biomolecules, mainly proteins, to form so called “protein coronas”. These coronas ultimately define the biological identity of the nanoparticles and dictate the interactions of cells with the protein-NP complex. We have studied the adsorption of human transferrin and bovine serum albumin on the surface of sulfonated polystyrene nanoparticle. In chapter 5, we show the formation of multi-layered protein coronas and compare to established adsorption models. In addition we followed for the first time the protein binding kinetics as a function of pH and salt. Through these studies, we aim to gain quantitative knowledge of the dynamic rearrangement of proteins on engineered nanomaterials.
|
190 |
Bioavailability of Manufactured Nanomaterials in Terrestrial EcosystemsJudy, Jonathan D 01 January 2013 (has links)
Manufactured nanomaterials (MNMs) from the rapidly increasing number of consumer products that contain MNMs are being discharged into waste streams. Increasing evidence suggests that several classes of MNMs may accumulate in sludge derived from wastewater treatment and ultimately in soil following land application as biosolids. Little research has been conducted to evaluate the impact of MNMs on terrestrial ecosystems, despite the fact that land application of biosolids from wastewater treatment will be a major pathway for the introduction of MNMs to the environment. To begin addressing this knowledge gap, we have conducted a series of experiments designed to test how bioavailable MNMs are to terrestrial ecoreceptors when exposed through a variety of pathways.
First, we used the model organisms Nicotiana tabacum L. cv Xanthi (tobacco) and Triticum aestivum (wheat) to investigate plant uptake of 10, 30 and 50 nm diameter gold (Au) MNMs coated with either tannate (T-MNMs) or citrate (C-MNMs). Both C-MNMs and T-MNMs of each size treatment bioaccumulated in tobacco, but no bioaccumulation of MNMs was observed for any treatment in wheat.
In a second exposure, we investigated the potential for bioaccumulation of MNMs from contaminated plant surfaces by a terrestrial secondary consumer, tobacco hornworm (Manduca sexta). We found that hornworms bioaccumulate Au MNMs, but that the assimilation efficiency of bioaccumulation was low. Hornworms eliminate ingested Au MNMs rapidly from 0-24 h, but very slowly from 1 d to 7 d.
Finally, we used the model organisms tobacco and tobacco hornworm to investigate the potential for trophic transfer of Au MNMs. Biomagnification of Au MNMs was observed in the hornworms.
We have demonstrated that MNMs of a wide range of size and with different surface chemistries are bioavailable to plants, that MNMs resuspended by wind, rain, biota, and mechanical disturbance from soil onto plant surfaces are bioavailable to terrestrial consumers, and that trophic transfer and biomagnification of plant accumulated MNMs can occur. These results have important implications for risks associated with nanotechnology, including the potential for human exposure.
|
Page generated in 0.0677 seconds