• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2337
  • 1068
  • 583
  • 274
  • 103
  • 47
  • 39
  • 24
  • 23
  • 23
  • 18
  • 18
  • 11
  • 10
  • 8
  • Tagged with
  • 5223
  • 969
  • 824
  • 668
  • 595
  • 479
  • 409
  • 388
  • 372
  • 336
  • 311
  • 303
  • 276
  • 275
  • 264
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
601

Design and control of the superparamagnetic properties of cobalt-based spinel ferrite nanoparticles

Samia, Anna Cristina S. 05 1900 (has links)
No description available.
602

Metallic and semiconductor nanoparticles : synthesis, characterization and femtosecond laser spectroscopic studies

Mohamed, Mona Bakr 05 1900 (has links)
No description available.
603

Bioactive Chitosan Nanoparticles and Photodynamic Therapy Inhibit Collagen Degradation in vitro

Persadmehr, Anousheh 09 December 2013 (has links)
This study evaluated the ability of photodynamic therapy (PDT), chitosan nanoparticles (CSnp), or their combination, to inhibit bacterial collagenase-mediated degradation of collagen. Rat type 1 fibrillar collagen matrices were untreated or treated with 2.5% glutaraldehyde (GD), 2.5% GD followed by 1% CSnp, 1% CSnp, PDT, or 1% CSnp followed by PDT. Samples, except untreated controls, were exposed to Clostridium histolyticum collagenase. The soluble digestion products were assessed by hydroxyproline assay and the remaining adherent collagen was quantified by picrosirius red (PSR) staining. Collagen treated with CSnp, PDT, or a combination of CSnp and PDT, exhibited less degradation than controls. The abundance of posttreatment residual collagen correlated with the extent of degradation. Fourier transform infrared (FTIR) spectroscopy analysis showed that PDT treatment enhanced collagen cross-linking. Immunoblotting of sedimented CSnp indicated that CSnp and collagenase bound with low affinity. However, CSnp-bound collagenase showed a significant reduction in collagenolytic activity compared with controls.
604

Tribological Properties of Nanoparticle-Based Lubrication Systems

Kheireddin, Bassem 16 December 2013 (has links)
New nanomaterials and nanoparticles are currently under investigation as lubricants or lubricant additives due to their unusual properties compared to traditional materials. One of the objectives of this work is to investigate the tribological properties of these materials in relation to surface topography. Chemical etching and metal evaporation methods were employed to prepare surfaces with various topographies. Surfaces were sheared with the use of a nanotribometer and characterized with an atomic force and scanning electron microscopes. For a system consisting of ZnS nanowires dispersed in dodecane sheared across ductile surfaces, it was found that the geometry of the nanowire relative to the surface topography plays a significant role. Moreover, for brittle surfaces, it was found that beyond a certain roughness the frictional properties remain unchanged. In addition, this work is also intended to explore novel lubricants with nanoparticle additives in efforts to control friction and wear. A system consisting of silica nanoparticles dispersed in ionic liquids was examined at various concentrations. It was found that an optimum concentration of nanoparticles exists and yields the best tribological properties. Such work represents an important step in understanding the tribological properties of nanoparticle lubricant additives in general; one that may ultimately provide the guidelines necessary for designing novel, low-friction, and wear-controlling nanoparticle-based lubrication systems that minimize energy and material losses due to friction.
605

Investigating the effects of nanoparticles on reproduction and development in Drosophila melanogaster and CD-1 mice.

Philbrook, Nicola 17 September 2012 (has links)
Manufactured nanoparticles (NPs) are a class of small ( ≤ 100 nm) materials that are being used for a variety of purposes, including industrial lubricants, food additives, antibacterial agents, as well as delivery systems for drug and gene therapies. Their unique characteristics due to their small size as well as their parent materials allow them to be exploited in convenience applications; however, some of these properties also allow them to interact with and invade biological systems. Few studies have been performed to determine the potential harm that NPs can inflict on reproductive and developmental processes in organisms. In this study, Drosophila melanogaster and CD-1 mice were orally exposed to varying doses of titanium dioxide (TiO2) NPs, silver (Ag) NPs, or hydroxyl-functionalized carbon nanotubes (fCNTs) and Drosophila were also exposed to microparticles (MPs) as a control for particle size. The subsequent effect of these materials on reproduction and development were evaluated. Strikingly, each type of NP studied negatively affected either reproduction or development in one or both of the two model systems. TiO2 NPs significantly negative effected both CD-1 mouse development (100 mg/kg or 1000 mg/kg) as well as Drosophila female fecundity (0.005%-0.5% w/v). Ag NPs significantly reduced mouse fetus viability after prenatal exposure to10 mg/kg. Ag NPs also significantly decreased the developmental success of Drosophila when they were directly exposed to these NPs (0.05% - 0.5% w/v) compared to both the vehicle and MP controls. fCNTs significantly increased the presence of morphological defects, resorptions and skeletal abnormalities in CD-1 mice, but had little effect on Drosophila. We speculate that the differences seen in the effects of NP types may be partially due to differences in reproductive physiology as well as each organism’s ability to internalize these NPs. Whereas the differing response of each organism to a NP type was likely due in part to varying durations of exposure. Since NPs are a popular commodity in today’s consumer world, the research presented here accentuates the need for further studies on the detrimental effects that these particles may have on a variety of developing organisms and on female reproductive health. / Thesis (Master, Environmental Studies) -- Queen's University, 2010-09-20 17:57:59.343
606

Prospective structured support and nanostructured active phase for oil upgrading

Chhabra, Arvind Unknown Date
No description available.
607

Bioactive Chitosan Nanoparticles and Photodynamic Therapy Inhibit Collagen Degradation in vitro

Persadmehr, Anousheh 09 December 2013 (has links)
This study evaluated the ability of photodynamic therapy (PDT), chitosan nanoparticles (CSnp), or their combination, to inhibit bacterial collagenase-mediated degradation of collagen. Rat type 1 fibrillar collagen matrices were untreated or treated with 2.5% glutaraldehyde (GD), 2.5% GD followed by 1% CSnp, 1% CSnp, PDT, or 1% CSnp followed by PDT. Samples, except untreated controls, were exposed to Clostridium histolyticum collagenase. The soluble digestion products were assessed by hydroxyproline assay and the remaining adherent collagen was quantified by picrosirius red (PSR) staining. Collagen treated with CSnp, PDT, or a combination of CSnp and PDT, exhibited less degradation than controls. The abundance of posttreatment residual collagen correlated with the extent of degradation. Fourier transform infrared (FTIR) spectroscopy analysis showed that PDT treatment enhanced collagen cross-linking. Immunoblotting of sedimented CSnp indicated that CSnp and collagenase bound with low affinity. However, CSnp-bound collagenase showed a significant reduction in collagenolytic activity compared with controls.
608

Continuous hydrothermal synthesis and crystallization of magnetic oxide nanoparticles

Holm, Linda Josefine 05 1900 (has links)
No description available.
609

Continuous Hydrothermal Production of Iron Oxide (Fe[subscript 2]0[subscript 3]) and Cobalt Oxide (Co[subscript 3]O[subscript 4])

Hao, Yalin 05 1900 (has links)
No description available.
610

New Materials for Gas Sensitive Field-Effect Device Studies

Salomonsson, Anette January 2005 (has links)
Gas sensor control is potentially one of the most important techniques of tomorrow for the environment. All over the world cars are preferred for transportation, and accordingly the number of cars increases, unfortunately, together with pollutants. Boilers and powerplants are other sources of pollutants to the environment. Metal-Insulator-Silicon Carbide (MISiC) Field-effect sensors in car applications and boilers have the potential to reduce the amount of pollutants. These devices are sensitive to several gases in exhaust and flues gases, such as hydrogen, hydrocarbons, and ammonia (for the selective catalytic reduction (SCR) application). These applications require specific and long term stable sensors. The car industry for instance wants sensors that will stand at least 240 000 km. This thesis presents studies of the active layers in MIS Fieldeffect gas sensors. Fundamental studies of the sensor mechanism has been performed in ultra high vacuum, UHV, to understand the gas response mechanism in more detail, and to find out how the sensing mechanism is affected by the catalytic active gate material. The influence of four different insulating layers was studied at atmospheric pressure. The catalytic layer has also been altered to metal oxide nanoparticles with or without impregnation of catalytic metals. Nanoparticles are potential candidates to be used as the gate material for high temperature, long-term stable FET sensor devices. The combination of catalytic metals and metal oxides may prevent reconstruction of the metal. The use of nanoparticles will increase the number of triple points (catalytic material and insulator in contact with gas), which are crucial e.g. for the ammonia sensitivity. Another challenging aspect of nanoparticles is the possibility to get selectivity to different gases based on the particle size. The goal is to find new sensitive, selective and more long term stable materials, which meet the requirements above. From the UHV studies we learned that the two catalytic active metals Pt and Pd, do behave in a similar way, although there are some quantitative differences. Values for the heat of adsorption on both the Pd and Pt surfaces are estimated as well as the dipole moments for the adsorbates on the insulator surface. The insulators play an important role in the sensing mechanism, since the adsorption of hydrogen atoms (or protons) that are detected by the sensor occur on the insulator surface. By changing the insulator material the saturation response of the sensors is affected. It was shown that Al2O3 gave a higher saturated response to hydrogen in Pt-MIS capacitors at 140°C as compared to Ta2O5, SiO2, and Si3N4. We have tested wet synthesized ruthenium dioxide and ruthenium nanoparticles, which are electrically conducting and catalytically active sensing material. RuO2 is especially interesting as a high temperature material since it is already oxidized. Both materials show a sensitivity pattern comparable to porous platinum. The temperature dependence of the gas response indicates a higher catalytic activity of the RuO2 as compared to Ru nanoparticles. Nanoparticles synthesized by aerosol technology provide several advantages like a good adhesion of the particles to the substrate, many possible material combinations and efficient methods for particle separation according to size. The methods to use this technology for sensing materials in MISiC sensors are now under development and some preliminary results are obtained. / On the day of the public defence of the doctoral thesis, the status of articles I and II was: accepted for publication.

Page generated in 0.0529 seconds