• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 112
  • 25
  • 11
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 187
  • 58
  • 45
  • 42
  • 42
  • 28
  • 28
  • 27
  • 25
  • 22
  • 22
  • 21
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Metal nanostructures for enhanced optical functionalities: surface enhanced Raman spectroscopy and photonic integration.

Qiao, Min 01 September 2011 (has links)
As the developments in nanoscale fabrication and characterization technology, the investigation and applications of light in metal nanostructures have been becoming one of the most focused research areas. Metal materials allow to couple the incident light energy into electromagnetic waves propagating on the metal surface under certain configurations, which is called surface plasmon (SP). This feature tremendously expanded the application possibility of metals in optical regime, such as extraordinary transmission (EOT), near-field optics and surface enhanced spectroscopies. In this talk, various metal structures will be demonstrated which could control SP’s propagation, resonance andlocal field enhancement. A number of SP applications are benefited – the plasmonic bragg reflector (PBR), the frequency sensitive plasmonic microcavity, the subwavelength metallic taper, the long range surface plasmon (LRSP) waveguide and surface enhanced Raman spectroscopy (SERS). Especially for SERS, long-term effort was devoted into it to achieve the single molecule detection limit. / Graduate
52

Hybrid photonic crystal nanobeam cavities: design, fabrication and analysis

Mukherjee, Ishita 07 1900 (has links)
Photonic cavities are able to confine light to a volume of the order of wavelength of light and this ability can be described in terms of the cavity’s quality factor, which in turn, is proportional to the confinement time in units of optical period. This property of the photonic cavities have been found to be very useful in cavity quantum electrodynamics, for e.g., controlling emission from strongly coupled single photon sources like quantum dots. The smallest possible mode volume attainable by a dielectric cavity, however, poses a limit to the degree of coupling and therefore to the Purcell effect. As metal nanoparticles with plasmonic properties can have mode volumes far below the diffraction limit of light, these can be used to achieve stronger coupling, but the lossy nature of the metals can result in extremely poor quality factors. Hence a hybrid approach, where a high-quality dielectric cavity is combined with a low-quality metal nanoparticle, is being actively pursued. Such structures have been shown to have the potential to preserve the best of both worlds. This thesis describes the design, fabrication and characterization of hybrid plasmonic – photonic nanobeam cavities. Experimentally, we were able to achieve a quality factor of 1200 with the hybrid approach, which suggests that the results are promising for future single photon emission studies. It was found that modeling the behaviour (resonant frequencies, quality factors) of these hybrid cavities with conventional computation methods like FDTD can be tedious, for e.g., a comprehensive study of the electromagnetic fields inside a hybrid photonic nanobeam cavity has been found to take up to 48 hours with FDTD. Hence, we also present an alternate method of analysis using perturbation theory, showing good agreement with FDTD. / Graduate
53

Optical applications of two-photon and microexplosion lithography /

Young, Aaron Cody. January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (leaves 113-123).
54

The effect of geometry and surface morphology on the optical properties of metal-dielectric systems

Hasegawa, Keisuke, 1977- 09 1900 (has links)
xiii, 133 p. ; ill. (some col.) A print copy of this title is available through the UO Libraries. Search the library catalog for the location and call number. / We analyze the effect of geometry and surface morphology on the optical properties of metal-dielectric systems. Using both analytical and numerical modeling, we study how surface curvature affects the propagation of surface plasmon polaritons (SPPs) along a metal-dielectric interface. We provide an intuitive explanation for how the curvature causes the phase front to distort, causing the SPPs to radiate their energy away from the metal-dielectric interface. We quantify the propagation efficiency as functions of the radius of curvature, and show that it depends nonmonotonically on the bend radius. We also show how the surface morphology influences the transmittance and the reflectance of light from disordered metal-dielectric nanocomposite films. The films consist of semicontinuous silver films of various surface coverage that are chemically deposited onto glass substrates. They exhibit a large and broadband reflection asymmetry in the visible spectral range. In order to investigate how the surface morphology affects the asymmetry, we anneal the samples at various temperatures to induce changes in the morphology, and observe changes in the reflection spectra. Our study indicates that the surface roughness and the metal surface coverage are the key geometric parameters affecting the reflection spectra, and reveals that the large asymmetry is due to the different surface roughness light encounters when incident from different side of the film. Additionally, we analyze how thin metal and dielectric layers affect the optical properties of metal-dielectric systems. Using the concept of dispersion engineering, we show that a metal-dielectric-metal microsphere--a metal sphere coated with a thin dielectric shell, followed by a metal shell--support a band of surface plasmon resonances (SPRs) with nearly identical frequencies. A large number of modes belonging to this band can be excited simultaneously by a plane wave, and hence enhancing the absorption cross-section. We also find that the enhanced absorption is accompanied by a plasmon assisted transparency due to an avoided crossing of dominant SPR bands. We demonstrate numerically that both the enhanced absorption and the plasmon assisted transparency are tunable over the entire visible range. We also present an experimental study of light scattering from silica spheres coated with thin semicontinuous silver shells, and attempt to describe their optical response using a modified scaling theory. This dissertation includes previously published co-authored materials. / Adviser: Miriam Deutsch
55

Fabrication and Characterization of Metallic Cavity Nanolasers

January 2014 (has links)
abstract: Nanolasers represents the research frontier in both the areas of photonics and nanotechnology for its interesting properties in low dimension physics, its appealing prospects in integrated photonics, and other on-chip applications. In this thesis, I present my research work on fabrication and characterization of a new type of nanolasers: metallic cavity nanolasers. The last ten years witnessed a dramatic paradigm shift from pure dielectric cavity to metallic cavity in the research of nanolasers. By using low loss metals such as silver, which is highly reflective at near infrared, light can be confined in an ultra small cavity or waveguide with sub-wavelength dimensions, thus enabling sub-wavelength cavity lasers. Based on this idea, I fabricated two different kinds of metallic cavity nanolasers with rectangular and circular geometries with InGaAs as the gain material and silver as the metallic shell. The lasing wavelength is around 1.55 μm, intended for optical communication applications. Continuous wave (CW) lasing at cryogenic temperature under current injection was achieved on devices with a deep sub-wavelength physical cavity volume smaller than 0.2 λ3. Improving device fabrication process is one of the main challenges in the development of metallic cavity nanolasers due to its ultra-small size. With improved fabrication process and device design, CW lasing at room temperature was demonstrated as well on a sub-wavelength rectangular device with a physical cavity volume of 0.67 λ3. Experiments verified that a small circular nanolasers supporting TE¬01 mode can generate an azimuthal polarized laser beam, providing a compact such source under electrical injection. Sources with such polarizations could have many special applications. Study of digital modulation of circular nanolasers showed that laser noise is an important factor that will affect the data rate of the nanolaser when used as the light source in optical interconnects. For future development, improving device fabrication processes is required to improve device performance. In addition, techniques need to be developed to realize nanolaser/Si waveguide integration. In essence, resolving these two critical issues will finally pave the way for these nanolasers to be used in various practical applications. / Dissertation/Thesis / Ph.D. Electrical Engineering 2014
56

Surface Plasmon Based Nanophotonic Optical Emitters

Vemuri, Padma Rekha 12 1900 (has links)
Group- III nitride based semiconductors have emerged as the leading material for short wavelength optoelectronic devices. The InGaN alloy system forms a continuous and direct bandgap semiconductor spanning ultraviolet (UV) to blue/green wavelengths. An ideal and highly efficient light-emitting device can be designed by enhancing the spontaneous emission rate. This thesis deals with the design and fabrication of a visible light-emitting device using GaN/InGaN single quantum well (SQW) system with enhanced spontaneous emission. To increase the emission efficiency, layers of different metals, usually noble metals like silver, gold and aluminum are deposited on GaN/InGaN SQWs using metal evaporator. Surface characterization of metal-coated GaN/InGaN SQW samples was carried out using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Photoluminescence is used as a tool for optical characterization to study the enhancement in the light emitting structures. This thesis also compares characteristics of different metals on GaN/InGaN SQW system thus allowing selection of the most appropriate material for a particular application. It was found out that photons from the light emitter couple more to the surface plasmons if the bandgap of former is close to the surface plasmon resonant energy of particular metal. Absorption of light due to gold reduces the effective mean path of light emitted from the light emitter and hence quenches the quantum well emission peak compared to the uncoated sample.
57

Multifunctional Organic-Inorganic Hybrid Nanophotonic Devices

Garner, Brett William 05 1900 (has links)
The emergence of optical applications, such as lasers, fiber optics, and semiconductor based sources and detectors, has created a drive for smaller and more specialized devices. Nanophotonics is an emerging field of study that encompasses the disciplines of physics, engineering, chemistry, biology, applied sciences and biomedical technology. In particular, nanophotonics explores optical processes on a nanoscale. This dissertation presents nanophotonic applications that incorporate various forms of the organic polymer N-isopropylacrylamide (NIPA) with inorganic semiconductors. This includes the material characterization of NIPA, with such techniques as ellipsometry and dynamic light scattering. Two devices were constructed incorporating the NIPA hydrogel with semiconductors. The first device comprises a PNIPAM-CdTe hybrid material. The PNIPAM is a means for the control of distances between CdTe quantum dots encapsulated within the hydrogel. Controlling the distance between the quantum dots allows for the control of resonant energy transfer between neighboring quantum dots. Whereby, providing a means for controlling the temperature dependent red-shifts in photoluminescent peaks and FWHM. Further, enhancement of photoluminescent due to increased scattering in the medium is shown as a function of temperature. The second device incorporates NIPA into a 2D photonic crystal patterned on GaAs. The refractive index change of the NIPA hydrogel as it undergoes its phase change creates a controllable mechanism for adjusting the transmittance of light frequencies through a linear defect in a photonic crystal. The NIPA infiltrated photonic crystal shows greater shifts in the bandwidth per ºC than any liquid crystal methods. This dissertation demonstrates the versatile uses of hydrogel, as a means of control in nanophotonic devices, and will likely lead to development of other hybrid applications. The development of smaller light based applications will facilitate the need to augment the devices with control mechanism and will play an increasing important role in the future.
58

Optomechanics in photonic crystal cavities = Optomecânica em cavidades de cristal fotônico / Optomecânica em cavidades de cristal fotônico

Benevides, Rodrigo da Silva, 1989- 07 August 2016 (has links)
Orientador: Thiago Pedro Mayer Alegre / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-31T00:04:36Z (GMT). No. of bitstreams: 1 Benevides_RodrigodaSilva_M.pdf: 12114965 bytes, checksum: 9db892fbca5fe67d883b58515f6e1dc7 (MD5) Previous issue date: 2016 / Resumo: A área de optomecânica de cavidades passou por um grande desenvolvimento na última década. O crescente interesse nesta área foi impulsionado principalmente pela interessante conexão entre movimentos mecânicos e campos ópticos. Tal acoplamento é amplamente explorado em diversos experimentos, com escalas variando de interferômetros quilométricos a cavidades ópticas microestruturadas. O principal desafio em todos estes experimentos é criar um dispositivo optomecânico com um longo tempo de vida óptico e mecânico, ao mesmo tempo em que mantém um grande acoplamento. Neste contexto, as cavidades de cristal fotônico surgiram como fortes candidatas já que elas são capazes de confinar campo óptico em um volume modal muito reduzido e por um longo tempo de vida. No regime clássico, estes pequenos dispositivos, que podem oscilar mecanicamente com frequências de alguns poucos MHz até dezenas de GHz, permitem detectar forças, massas e deslocamentos muito pequenos. Elas também são usadas para produzir osciladores mecânicos de alta qualidade, que podem ser sincronizados por intermédio do campo óptico. No regime quântico, a optomecânica quântica de cavidades tem sido usada para ajudar na compreensão do fenômeno de decoerência em uma escala mesoscópica, criando estados não-clássicos fortemente acoplados entre campo óptico e movimento mecânico, intermediado pela interação optomecânica. Entretanto, até agora, foram realizados poucos estudos sobre a possibilidade de produção destes dispositivos em larga escala, um passo necessário para massivas aplicações tecnológicas e científicas destes dispositivos. Neste trabalho, descrevemos um estudo detalhado de cavidades optomecânicas baseadas em cristais fotônicos produzidos numa fábrica de dispositivos compatíveis com indústria CMOS. Nós demonstramos a viabilidade desta plataforma explorando três geometrias distintas de cristais fotônicos. Primeiramente, nós mostramos como atingir fatores de qualidade muito elevados usando uma geometria consistente com as limitações de fabricação. Nossos fatores de qualidade são os maiores já reportados usando cavidades de cristal fotônico fabricadas com litografia óptica. Em seguida, investigamos uma cavidade do tipo fenda, possibilitando a produção de alto acoplamento optomecânico usando um movimento mecânico planar. Por fim, desenhamos um escudo acústico, com dimensões variadas, para restringir o modo mecânico para dentro da região óptica. Essa estratégia foi usada de forma bem sucedida para produzir altos fatores de qualidade mecânicos e acoplamentos optomecânicos, permitindo a observação de resfriamento e amplificação de modos mecânicos à baixa temperatura / Abstract: The field of cavity optomechanics has experienced a rapid growth in last decade. The increasing interest in this area was mostly driven by the intricate interface between mechanical motion and the optical field. Such coupling is widely explored in a variety of experiments scaling from kilometer long interferometers to micrometer optical cavities. The challenge on all these experiments is to create an optomechanical device with long-living optical and mechanical resonances while keeping a large coupling rate. In this context photonic crystal cavities have emerged as a strong candidate since they are able to produce very small optical mode volume and long optical lifetime. In the classical regime, these tiny devices, which can mechanically oscillate from frequencies ranging from couple MHz up to tens of GHz, allows for highly sensitive small forces, masses, displacements and acceleration detectors. They are also used to produce high quality optically driven mechanical oscillators which can be synchronized via an optical field. In the quantum regime, cavity quantum optomechanics is being used to understand decoherence phenomena in a mesoscopic scale by creating nonclassical states between light and mechanical modes intermediated by optomechanical interaction. However up to now, few studies have been done concerning the possibility of large scale production of these devices, a necessary step towards massive technological and scientific application of these devices. In this work, we describe a detailed study of optomechanical cavities based upon photonic crystal cavities fabricated in a CMOS-compatible commercial foundry. We prove the feasibility of this platform exploring three photonic crystal designs. First, we show how to achieve ultra-high optical quality factors using a design resilient to the fabrication constrains. Our demonstrated quality factors are the largest ever reported using photonic crystal cavities manufactured by optical lithography. Secondly, we investigate a slot type optical cavity, able to produce very large optomechanical coupling using a simple in-plane motion. Finally, we design a trimmable acoustic shield to restrict the mechanical motion inside the optical region. Such strategy was successfully used to produce high mechanical quality factor and optomechanical coupling which enabled the observation of cooling and amplification of mechanical modes at low temperature / Mestrado / Física / Mestre em Física / 2014/12875-4 / 132737/2014-0 / FAPESP / CNPQ
59

MAKING BETTER USE OF LIGHT: ADDRESSING OPTICAL CHALLENGES WITH METASURFACES

Di Wang (7481567) 14 January 2021 (has links)
The capability of light goes well beyond illumination, yet it is so underused in our lives because the control of light still largely relies on clumsy bulk lenses. Less than 10 years ago, a type of revolutionary devices made of nanometer scale optical elements – metasurfaces – was invented to control the light propagation and its energy dissipation with arbitrary degree of freedom, at unprecedentedly small volumes (although some would argue that the advent of metasurfaces came in the 1990s). Vast diversity of new discoveries has since been made possible, and many more existing applications have seen significant performance enhancement with the aid of metasurfaces.<div><br><div> <div>In the scope of this work, I explore the use of a variety of metasurfaces to address several existing real-world challenges: sensing, optical heating, and data storage. Among these, three metasurfaces involve the world’s first two-dimensional material, graphene. I first investigate the graphene plasmonic resonator, which have been shown to be extremely sensitive single-molecule sensors. Graphene also has many intriguing properties in photodetection applications, such as lightweight, ultra-wide detection band, and ultrafast response speed. I have used two different metasurfaces to enhance the intrinsically low responsivity (sensitivity) of graphene photodetectors. Amidst the discussion of graphene photodetectors, I show the characterization result of plasmonic heating of metasurfaces, an essential process of the graphene photo-responsivity enhancement. Lastly, I present a multi-functional metasurface which can be used in optical steganography, encryption, and data storage. The proposed metasurface is compatible with large scale parallel readout, which outperforms current Blu-ray technology in both storage capacity and readout speed</div></div></div>
60

Design and implementation of nanoantennas on integrated guides and their application on polarization analysis and synthesis

Espinosa Soria, Alba 05 July 2018 (has links)
La fotónica sobre silicio se ha convertido en la tecnología más importante en la producción de chips integrados fotónicos. Sus grandes ventajas, entre las cuales destacan su idoneidad para la fabricación a gran escala y su bajo coste de producción, como resultado de la posibilidad del uso tecnología CMOS, son motivo suficiente para justificar su supremacía sobre otras plataformas de integración. Pese a los múltiples dispositivos ya implementados en dicha tecnología, entre los que cabe destacar filtros WDM o moduladores electro-ópticos, todavía hay espacio para la mejora, sobre todo en cuanto a la reducción del foot-print de los dispositivos o a la creación de nuevas funcionalidades para la manipulación de la luz. Dichas mejoras podrían llevarse a cabo mediante la integración de componentes con dimensiones sub-lambda surgidos en el campo conocido como plasmónica. Esta disciplina estudia la interacción entre la luz y los metales, que viene mediada por la existencia de ondas conocidas como plasmones de superficie. Una de las propiedades clave de los plasmones es su capacidad para confinar la luz muy por encima del límite de difracción, lo cual es limitante en el caso de la fotónica sobre silicio. Sin embargo, las pérdidas por absorción de los metales a frecuencias ópticas impiden su uso para el guiado de la luz en grandes distancias. Se hace evidente, por tanto, los beneficios de unificar estos dos mundos. Usando el silicio como material conductor de la señal óptica y el metal como eficiente interactor con la luz en estructuras sub-lambda, se pueden crear nuevos dispositivos para la manipulación de las propiedades de la luz en la nanoescala. Esta Tesis está centrada en la integración de estructuras con dimensiones sub-lambda en guías de silicio y en su aplicación a nuevas funcionalidades de manipulación de la luz en chips de silicio. Dichas nanoestructuras sirven de transductores entre la luz guiada y la radiación en espacio libre, por lo que también pueden ser denominadas nanoantenas. Para empezar, se describen las propiedades de los modos guiados en guías de onda de silicio para la correcta excitación de las nanoantenas, seguido de la demostración de técnicas de integración de estas nanoestructuras en las propias guías para aumentar su eficiencia de interacción con la luz guiada. Además, se demuestra el control coherente de la absorción y el scattering de una nanoantenna metálica integrada en una guía de silicio. Por último, a partir del posicionamiento asimétrico de la nanoestructura con respecto a la guía, se proponen y demuestran nuevos métodos de manipulación de la polarización, como la capacidad para sintetizar estados de polarización deseados a escala nanométrica. Esto desembocará en la demostración teórica y experimental de un nanopolarímetro de Stokes, basado en tecnología fotónica sobre silicio, capaz de determinar el estado de polarización de manera local, óptima, y no destructiva, habilitándose su uso para medidas de polarización en tiempo real en circuitos integrados. / Silicon photonics has become the most important technology in integrated photonic chips production. Its great advantages, including its suitability for large-scale production and low-cost production, as a result of the possibility of using CMOS technology, are sufficient reason to justify its supremacy over other integration platforms. Despite the multiple devices already implemented in this technology, among which include WDM filters or electro-optical modulators, there is still room for improvement, especially in terms of reducing the devices footprint or the creation of new functionalities for the manipulation of light. Such improvements could be carried out by integrating components with sub-lambda dimensions arising in the field known as plasmonics. This discipline studies the interaction between light and metals, which is mediated by the existence of waves known as surface plasmons. One of the key properties of plasmons is their ability to confine light well beyond the diffraction limit, which is limiting in the case of silicon photonics. However, losses due to the absorption of metals at optical frequencies prevent their use for guiding light over long distances. Therefore, the benefits of unifying these two worlds becomes evident. By using silicon as the conductive material of the optical signal and the metal as an efficient light interconnector in subwavelength structures, new devices can be created for the manipulation of the properties of light at the nanoscale. This thesis is focused on the integration of structures with subwavelength dimensions in silicon waveguides and in their application to new functionalities of light manipulation in silicon chips. These nanostructures serve as transducers between guided light and free space radiation, so they can also be termed nanoantennas. To begin with, the guided modes properties in silicon waveguides are described for the correct excitation of the nanoantennas, followed by the demonstration of integration techniques of these nanostructures in these waveguides to increase their interaction efficiency with the guided light. In addition, the coherent control of the absorption and scattering of a metallic nanoantenna integrated in a silicon waveguide is demonstrated. Finally, from the asymmetric positioning of the nanostructure with respect to the waveguide, new polarization manipulation methods are proposed and demonstrated, such as the ability to synthesize desired states of polarization at the nanoscale. This will lead to the theoretical and experimental demonstration of a Stokes nanopolarimeter, based on photon-on-silicon technology, capable of determining the polarization state locally, optimally, and non-destructively, enabling its use for real-time polarization measurements in integrated circuits. / La fotònica sobre silici s'ha convertit en la tecnologia més important en la producció de xips integrats fotònics. Els seus grans avantatges, entre les quals destaquen la seva idoneïtat per a la fabricació a gran escala i el seu baix cost de producció, com a resultat de la possibilitat de l'ús tecnologia CMOS, són motiu suficient per justificar la seva supremacia sobre altres plataformes d'integració. Malgrat els múltiples dispositius ja implementats en aquesta tecnologia, entre els quals cal destacar filtres WDM o moduladors electro-òptics, encara hi ha espai per a la millora, sobretot quant a la reducció del foot-print dels dispositius o a la creació de noves funcionalitats per a la manipulació de la llum. Aquestes millores podrien portar-se a terme mitjançant la integració de components amb dimensions sub-lambda sorgits en el camp conegut com plasmònica. Aquesta disciplina estudia la interacció entre la llum i els metalls, que ve intervinguda per l'existència d'ones conegudes com plasmons de superfície. Una de les propietats clau dels plasmons és la seva capacitat per confinar la llum molt per sobre del límit de difracció, la qual cosa és limitant en el cas de la fotònica sobre silici. No obstant això, les pèrdues per absorció dels metalls a freqüències òptiques impedeixen el seu ús per al guiat de la llum en grans distàncies. Es fa evident, per tant, els beneficis d'unificar aquests dos mons. Usant el silici com a material conductor del senyal òptic i el metall com eficient interactor amb la llum en estructures sub-lambda, es poden crear nous dispositius per a la manipulació de les propietats de la llum en la nanoescala. Aquesta Tesi està centrada en la integració d'estructures amb dimensions sub-lambda en guies de silici i en la seva aplicació a noves funcionalitats de manipulació de la llum en xips de silici. Aquestes nanoestructures serveixen de transductors entre la llum guiada i la radiació en espai lliure, de manera que també poden ser denominades nanoantenes. Per començar, es descriuen les propietats de les maneres guiats en guies d'ona de silici per a la correcta excitació de les nanoantenes, seguit de la demostració de tècniques d'integració d'aquestes nanoestructures en les pròpies guies per augmentar la seva eficiència d'interacció amb la llum guiada. A més, es demostra el control coherent de l'absorció i el scattering d'una nanoantenna metàl·lica integrada en una guia de silici. Finalment, a partir del posicionament asimètric de la nanoestructura respecte a la guia, es proposen i demostren nous mètodes de manipulació de la polarització, com la capacitat per sintetitzar estats de polarització desitjats a escala nanomètrica. Això desembocarà en la demostració teòrica i experimental d'un nanopolarímetre de Stokes, basat en tecnologia fotònica sobre silici, capaç de determinar l'estat de polarització de manera local, òptima, i no destructiva, habilitant el seu ús per a mesures de polarització en temps real en circuits integrats. / Espinosa Soria, A. (2018). Design and implementation of nanoantennas on integrated guides and their application on polarization analysis and synthesis [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/105382 / TESIS

Page generated in 0.041 seconds