• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 44
  • 22
  • 11
  • 11
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

PROCESSING OF NANOCOMPOSITES AND THEIR THERMAL AND RHEOLOGICAL CHARACTERIZATION

Jacob M Faulkner (7023458) 13 August 2019 (has links)
<p>Polymer nanocomposites are a constantly evolving material category due to the ability to engineer the mechanical, thermal, and optical properties to enhance the efficiency of a variety of systems. While a vast amount of research has focused on the physical phenomena of nanoparticles and their contribution to the improvement of such properties, the ability to implement these materials into existing commercial or newly emerging processing methods has been studied much less extensively. The primary characteristic that determines which processing technique is the most viable is the rheology or viscosity of the material. In this work, we investigate the processing methods and properties of nanocomposites for thermal interface and radiative cooling applications. The first polymer nanocomposite examined here is a two-component PDMS with graphene filler for 3D printing via a direct ink writing approach. The composite acts as a thermal interface material which can enhance cooling between a microprocessor and a heat sink by increasing the thermal conductivity of the gap. Direct ink writing requires a shear thinning ink with specific viscoelastic properties that allow for the material to yield through a nozzle as well as retain its shape without a mold following deposition. No predictive models of viscosity for nanocomposites exist; therefore, several prominent models from literature are fit with experimental data to describe the change in viscosity with the addition of filler for several different PDMS ratios. The result is an understanding of the relationship between the PDMS component ratio and graphene filler concentration with respect to viscosity, with the goal of remaining within the acceptable limits for printing via direct ink writing. The second nanocomposite system whose processability is determined is paint consisting of acrylic filled with reflective nanoparticles for radiative cooling paint applications. The paint is tested with both inkjet and screen-printing procedures with the goal of producing a thermally invisible ink. Radiative cooling paint is successfully printed for the first time with solvent modification. This work evaluates the processability of polymer nanocomposites through rheological tailoring. </p><br>
22

Hydrogen cryosorption of micro-structured carbon materials

Teng, Xiao January 2017 (has links)
In comparison with the high-pressure adsorption at room temperature, hydrogen adsorption at cryogenic temperatures can be significantly improved at low pressures, which has great potential for prospective mobile applications. In this study, a differential pressure based manometry system was designed and constructed for fast analysing hydrogen adsorption uptakes of sorbents up to a maximum of 10 wt% at 77 K and up to 11 bar. The safety design of the system in compliance with European ATEX directives (Zone 2) for explosive atmospheres was discussed in detail, together with additional pneumatic systems for remote control of the experiments. A thorough error analysis of related experimental tests was also performed. Common carbon sorbents, including several Norit branded activated carbons and graphene nanoplatelets (GNPs) with various surface areas, were characterised for their pore structures. The structural differences among GPNs of different surface areas were also studied. The hydrogen adsorption isotherms of these sorbents, examined in the newly-built manometry system, were further analysed and discussed with reference to the assessed microstructural properties. The carbonisation processes of plasma carbons from the microwave splitting of methane, and biochars from the pyrolysis of Miscanthus, were intensively studied primarily based on Raman spectroscopy, in conjunction with other characterisation techniques such as XRD, FTIR and XPS, for exploring the formation of graphitic structures and crystallinity under various conditions. Two selected types of carbons, the activated carbon AC Norit GSX with a specific surface areas of 875 m2/g and the graphene nanoplates with a specific surface area of 700 m2/g, were decorated with palladium nanoparticles in different compositions. The growth and distribution of doped palladium particles in the carbon substrates were studied, and their effects on porous properties and microstructures of the sorbents were also reviewed. Hydrogen adsorption tests of the decorated carbons were further conducted and discussed, to explore the potential effects of Pd contents on the adsorption kinetics and hydrogen absolute uptakes.
23

Design, Fabrication and Characterization of PVA/Nanocarbon Composite Fibers

January 2018 (has links)
abstract: Polymer fibers have broad applications in wearable electronics, bulletproof vests, batteries, fuel cells, filters, electrodes, conductive wires, and biomedical materials. Polymer fibers display light density and flexibility but are mostly weak and compliant. The ceramic, metallic, and carbon nanoparticles have been frequently included in polymers for fabricating continuous, durable, and functional composite fibers. Nanoparticles display large specific areas, low defect density and can transfer their superior properties to polymer matrices. The main focus of this thesis is to design, fabricate and characterize the polymer/nanocarbon composite fibers with unique microstructures and improved mechanical/thermal performance. The dispersions and morphologies of graphene nanoplatelets (GNPs), the interactions with polyvinyl alcohol (PVA) molecules and their influences on fiber properties are studied. The fibers were fabricated using a dry-jet wet spinning method with engineered spinneret design. Three different structured fibers were fabricated, namely, one-phase polymer fiber (1-phase), two-phase core-shell composite fiber (2-phase), and three-phase co-axial composite fiber (3-phase). These polymer or composite fibers were processed at three stages with drawing temperatures of 100˚C, 150˚C, and 200˚C. Different techniques including the mechanical tester, wide-angle X-Ray diffraction (WAXD), scanning electron microscope (SEM), thermogravimetric analysis (TGA), and differential scanning calorimeter (DSC) have been used to characterize the fiber microstructures and properties. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2018
24

Development of polarimetric and emission pattern analysis : applied to determine a single nanoplatelet dipole / Analyse polarimétrique et diagramme de rayonnement de nanoplaquettes colloïdales individuelles de CdSe/CdS

Nguyen, Thu-Loan 26 October 2017 (has links)
Le contrôle et l'optimisation des propriétés d'émission des nanomatériaux peuvent être obtenus par un couplage efficace entre nanoémetteurs et nanostructures permettant d’obtenir une directivité plus élevée, une dynamique d’émission plus rapide. Il est pour cela nécessaire d’obtenir l'accord spectral de l'émetteur avec les modes de nanostructures, le positionnement spatial du nanoémetteur à l'endroit où l'intensité du mode résonant de la nanostructure est maximale, et une orientation du dipôle nanoémetteur parallèle au champ électrique résonant. En plasmonique les résonances larges des modes permettent un accord spectral facile. L’accord spatial est plus difficile, mais des stratégies ont été mises en œuvre avec succès. Le contrôle de l'orientation du dipôle reste lui un défi. En plasmonique, par exemple, une interaction efficace ne peut être obtenue que pour des dipôles orthogonaux à la surface métallique. La détermination de l'orientation du dipôle émetteur est donc cruciale pour les dispositifs plasmoniques tels que les nano-antennes.Dans ma thèse, j'ai contribué au développement d'une méthode polarimétrie visant à analyser le dipôle émetteur d'un nanoémetteur et son orientation. J'ai effectué des expériences et les ai analysées. Le modèle décrit l'émission d'un dipôle proche d'une interface plane dans un large éventail de conditions expérimentales réalistes, en particulier le cas où le nanoémetteur se trouve à proximité d’un film d'or. Dans cette situation, pour des nanocristaux de CdSe/CdS assimilable à deux dipôles orthogonaux dégénérés, l'imagerie défocalisée n'est pas suffisamment sensible pour fournir des informations quantitatives fiables sur l'orientation de l'émetteur. A contrario, la polarimétrie permet de répondre à cette question. Avec le même modèle, le diagramme d'émission correspondant à l'émission dipolaire en champ lointain pour toutes ces conditions expérimentales a été calculé. En combinant la polarimétrie et l’étude des diagrammes de rayonnement, on peut obtenir des informations sur la structure dipolaire et l’orientation des dipôles. J'ai appliqué cette méthode pour étudier les nanoplaquettes semi-conductrices colloïdales de CdSe/CdS avec différentes formes géométriques : plaquettes carrées minces, plaquettes rectangulaires minces et plaquettes cubiques. J'ai établi une relation entre les structures géométriques des plaquettes et la nature et l'orientation de leurs dipôles émetteurs associés. / Control and optimization of nanomaterial emission properties, can be obtained thanks to efficient coupling between nanoemitters and nanostructures for achieving higher directivity, quicker dynamics. The requirements are the spectral tuning of the emitter to the nanostructures modes, the spatial positioning of the nanoemitter at the location of maximum intensity of the resonant nanostructure mode, and a proper orientation of the dipole nanoemitter. In plasmonics, the spectrally broad resonances make the spectral tuning easy. Whereas for spatial tuning, many strategies have been implemented successfully, the control of the dipole orientation remains a challenge. In plasmonics, for example, efficient interaction can only be achieved for dipoles orthogonal to the metallic surface. The determination of the orientation of the emitting dipole is thus very crucial for plasmonic devices such as nanoantennas. In my thesis, I contributed to the development of a polarimetric method aiming at the analysis of a nanoemitter’s emitting dipole and its orientation. I performed experiments and analyzed them. The model I used describes the emission of a dipole close to a plane interface in a wide range of realistic experimental conditions, including a very common case in plasmonics when the nanoemitter lies close a gold film. In this situation for CdSe nanocrystals which can be considered as two orthogonal degenerated emitting dipoles, the more standard defocused imaging method is not sufficiently sensitive to provide reliable quantitative information on the emitter’s orientation. With the same model, I also computed the emission diagram corresponding to the dipolar emission in far field for all these experimental conditions. By analyzing the emission’s polarization together with the emission pattern, I could determine the three-dimensional orientation of an emitting dipole. I applied this method to investigate the dipolar structure and orientation of colloidal semiconducting CdSe/CdS nanoplatelets with different geometries: thin square platelets, thin rectangular platelets, and cubic platelets. I established a relationship between the geometric structures of the platelets and the dimensionality and orientation of their associated emitting dipoles.
25

Auto-assemblage de nanoparticules Janus / Self-assembly of Janus Nanoparticles

Castro, Nicolò 05 December 2016 (has links)
L’expression "Nanoparticules Janus" est utilisée pour se référer aux nanoparticules colloïdales faites de deux moitiés qui présent deux propriétés physiques et/ou chimiques différentes. Au cours des dernières années, plusieurs études théoriques ont été publiées sur les possibilités d’auto-assemblage offertes par ces particules (en particulier par Sciortino, F. et al.), mais peu de travail expérimental a été fait sur ce sujet. Les études théoriques suggèrent que beaucoup de comportements intéressants apparaissent quand la taille des particules s’approche de la portée d’interaction des forces en jeu (des dizaines de nanomètres dans le cas des forces de Van der Waals et des forces hydrophobes). Dans ce manuscrit, nous montrons la formation d’agrégats des hétérodimères de Au–SiO₂ d’une taille inférieure à 100nm. L’auto-assemblage a été déclenché par un échange du ligand hydrophile sur la surface de l’or par un ligand hydrophobe induisant une interaction attractive. L’assemblage a été suivi par spectroscopie d’absorption résolue dans le temps et diffusion des rayons X aux petits angles. Nous avons constaté que les thiols les plus courts ont une période d’induction plus longue et forcent les particules à se rapprocher davantage, comparé à des thiols avec des chaînes plus longues. Nous étudions également un second système : des nanoplaquettes de CdSe. Celles-ci sont des objets quasi-2D en matériau semiconducteur avec des propriétés optiques uniques. Ces propriétés résultant de leur taille réduite dans une dimension. Du fait de leur nouveauté et de leur particularité, leur nucléation et le remarquable mécanisme de croissance de ces particules sont toujours étudiés. Ainsi nous avons suivi leur synthèse par SAXS et WAXS in situ, afin d’obtenir des informations en ce qui concerne ces deux étapes, et notamment d’étudier la déformation de certains de ces systèmes sous forme de feuillets enroulés de CdSe. Les nanoplaquettes de CdSe ont été aussi utilisés pour créer des structures hybrides CdSe–Au. La combinaison de ces deux matériaux a déjà montré des effets uniques, comme une meilleure efficacité catalytique et, combiné avec la dimension réduite et le contrôle des plaquettes, pourrait aboutir à des caractéristiques encore plus intéressantes. Nous proposons une méthode de synthèse qui aboutit à la formation de petites sphères d’or sur les coins des plaquettes. Nous montrons que la taille des sphères dépend de la quantité de précurseur utilisée, et des images de microscopie électronique à haute résolution mettent en évidence la structure cristalline des deux matériaux. / "Janus nanoparticles" is the term used to refer to colloidal nanoparticles made of two halves with different physical and chemical properties. Over the last years, several theoretical studies have been published on the self-assembly possibilities offered by these particles (in particular by Sciortino, F. et al.), but little experimental work has been done on them. The theoretical studies suggest that many interesting behaviors appear when the size of the particles approaches the interaction range of the forces at play (tens of nanometers in the case of van der Waals and hydrophobic forces). In this manuscript, we show the formation of clusters of Au–SiO₂ heterodimers with sizes of less than 100nm. The self-assembly was induced by exchanging the hydrophilic ligand on the Au surface with a hydrophobic one, which provided the attractive interaction. The assembly was followed by time-resolved absorption spectroscopy and small-angle X-ray scattering. We found that shorter thiols have a longer induction period, and cause the particles to come closer together, compared to thiols with longer tails. We also study a second system: CdSe nanoplatelets. These are semiconducting quasi-2D structures with unique optical properties. These properties result from their reduced size in one of the dimensions. Because of their novelty and particularity, the nucleation and growth mechanism of these particles is still being studied. We followed the synthesis using in-situ SAXS and WAXS, to obtain information with regards to this mechanism and to study the deformation which occurs in some of these systems which leads to rolled up sheets of CdSe. The CdSe nanoplatelets were also used to create hybrid CdSe–Au structures. The combination of these two materials has already proven to produce unique effects such as enhanced catalysis and, combined with the reduced dimensionality and control of the platelets, could result in even more interesting characteristics. We propose a synthesis method which results in the formation of small gold spheres on the corners of the platelets. We show that the size of the spheres depends on the amount of precursor used, and show high resolution electron microscopy images which highlight the crystalline structure of both materials.
26

Cement-based stabilization/solidification of zinc-contaminated kaolin clay with graphene nanoplatelets

Wu, Randall 19 May 2021 (has links)
Heavy-metal contamination in soils has become a serious environmental problem. Among all metals, excessive amount of zinc was released to soils over the years. Zinc is not only toxic to human being, but also to plants. High concentration of zinc is extremely phytotoxic. Currently, the most popular method to remediate heavy-metal contaminated soils is stabilization/solidification (S/S) technique as it is cheaper, faster and more effective to remediate heavy metals than other remediation methods. Portland cement is the most-used binder in S/S technique. However, the production of Portland cement has released a significant amount of carbon dioxide, which strongly contributes to global warming. In addition, zinc retards the setting and hydration of Portland cement, which would require more Portland cement to remediate zinc-contaminated sites. Therefore, researchers are looking for new materials to improve the performance of Portland cement in zinc-contaminated soils. In recent years, the application of graphene-based materials in concrete had proved to be effective. Due to relative cost-effectiveness and comparable properties, multi-layer graphene, known as graphene nanoplatelets, may show a promising potential in construction. Moreover, research has reported that graphene nanoplatelets can be exfoliated from graphite and potentially scaled up for full-scale applications. At present, there is no application of graphene nanoplatelets in the S/S of contaminated soils and the roles of graphene nanoplatelets in cement-stabilized zinc-contaminated clay remained unknown. In this research, graphene nanoplatelets were dispersed in solution with a high-shear mixing apparatus. Dispersed graphene nanoplatelets solution was then applied to zinc-contaminated soil along with cement. To evaluate the efficacy of this S/S method, various influencing factors such as mixing sequence, graphene nanoplatelets content, zinc content, cement content, and curing time were studied. An optimum graphene nanoplatelets content was determined through the unconfined compressive strength (UCS) of the stabilized/solidified samples. It was found that at the optimum content, the unconfined compressive strength of cement-stabilized zinc-contaminated clay was improved by 22.3% with the addition of graphene nanoplatelets. Also, graphene nanoplatelets were effective at moderate zinc content and low cement content. Graphene nanoplatelets accelerated cement hydration effectively at early ages. Microstructural analyses indicated that more hydration products were developed in samples with graphene nanoplatelets. At current stage, it is still expensive to apply graphene nanoplatelets in S/S technique; however, it is possible to exfoliate graphite into graphene nanoplatelets in future research. / Graduate / 2022-05-12
27

Microstructure and Mechanical Properties of Laser Additively Manufactured Nickle based Alloy with External Nano Reinforcement: A Feasibility Study

Wang, Yachao 30 October 2018 (has links)
No description available.
28

Catalytic Thermal Conversion of Kraft Lignin to Multi-Layer Graphene Materials

Yan, Qiangu 06 May 2017 (has links)
The objective of this research is to develop a scalable manufacturing process for high-volume production of low-cost graphene materials from lignin. The process includes preparation of catalyst-lignin precursors, pretreatment of precursors, and catalytic graphitization of kraft lignin to graphene materials. A growth concept, “catalytic thermal molecular welding (CTMW)” technique is proposed and validated to produce graphene materials from solid carbon resources. CTMW technique is a single process with two stages, i.e., the carbon-encapsulated metal nanostructures are first prepared. Then in the second stage these core-shell structures are opened by “scissoring molecules”, the cracked carbon shell units are welded and reconstructed to multilayer graphene materials under high temperature with selected “welding reagent gases” like light hydrocarbons (methane, natural gas, etc.) and hydrogen. Multi-layer nano-shell structure-based graphene materials, such as fluffy graphene, graphene chains, multi-layer graphene nanoplatelets, flatten or curved sheet-like graphene can be produced through altering fabrication conditions. The effects of transitional metal catalysts (Ni, Cu, Fe, and Mo) on the yields and structures of multi-layer nano-shell structure-based graphene materials from lignin are compared. The effects of the iron chemical resources (Fe(NO3)3, FeCl2, FeCl3, and Fe2O3 (nano)), iron loading on the yields and structures of multi-layer graphene materials from lignin are also examined. The influences of temperature, heating rate, heating time, metal-lignin precursor particle size, and welding reagent gas types on the yield of multi-layer graphene materials from lignin resources are investigated. Welding temperatures are optimized as1,000°C or above, with heating rates of 10°C or above. Welding gases including, argon (Ar), hydrogen (H2), methane (CH4), natural gas (NG), and mixed of these gases, are used at flow rates from 20 to 300 mL/min. Heating time is controlled between 0 to 5 hours. The effect of precursor particle size on final products is examined between 44 to 426 microns (Delta-m).
29

Ultrasonically aided extrusion in preparation of polymer composites with carbon fillers

Zhong, Jing 09 June 2016 (has links)
No description available.
30

Development of nano-graphene cementitious composites (NGCC)

Ilyas, Muhammad January 2016 (has links)
Ordinary Portland cement (OPC) is the main constituent of concrete works as a principal binder for aggregates and intrinsically transmits the brittleness into concrete through the formation of hydration crystals in the cement microstructure. A number of nano cementitious composites were developed in recent years to offset the brittleness with newly discovered nanomaterials and the most prevalent among those is the graphene oxide (GO). The main objective of this PhD research work is to develop nano graphene cementitious composites (NGCC) using low cost, two dimensional (2D) graphene nanoplatelets (GNPs) and one dimensional (1D) graphited carbon nanofibres (GCNFs) with unique conical surface morphology. The GNPs were sourced synthesised in an environmental friendly way via plasma exfoliation whereas, GCNFs were manufactured through catalytic vapour grown method. The project further investigated the effect of these nanomaterials in regulating the distinctive microstructure of cement matrix leading to enhance its mechanical properties. Three different types of high-performance NGCC namely NGCC-Dot, NGCC-Fnt and NGCC-CNF, are developed by activating pristine GNPs (G-Dot), functionalised GNPs (G-Fnt) and graphited nanofibers (G-CNFs) into the cement matrix respectively. It is found through various characterization and experimental techniques that both GNPs and GCNFs regulated the cement microstructure and influenced the mechanical properties of NGCC uniquely. A remarkable increase in the flexural and the tensile strength of newly developed NGCC has been achieved and that could be attributed to the formation of distinctive microstructure regulated by catalytic activation of these nanomaterials. The shape (1D, 2D) and unique morphology of these nanomaterials played a vital role in the mechanism of crystal formation to regulate the cement microstructure. Based on the observations of test results and comprehensive characterization, the possible mechanisms of crystal formation and development of distinctive microstructure of NGCC has been established which has then proceeded to the development of a physical model for NGCC development.

Page generated in 0.0646 seconds