• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 44
  • 22
  • 11
  • 11
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Elaboración de bloques de concreto adicionado con nanoplaquetas de beterraga azucarera para prevenir las patologías en unidades de concreto tradicional usadas en edificaciones cercanas al mar / Concrete blocks for structural masonry homes built in a marine atmosphere zone using tuber waste from the food industry

Olarte Breña, Karen Gabriela, Sánchez Riveros, María de los Ángeles 28 October 2020 (has links)
Las manifestaciones patológicas de mayor importancia en los bloques de concreto de la albañilería armada son las eflorescencias y las fisuras; las primeras son estéticas y las segundas son estructurales. Estas patologías se originan por la porosidad del bloque; la cual facilita el ingreso de las sales procedentes de la brisa marina y niebla salina presentes en la atmósfera marina. Estas sales, por efecto del viento son arrastradas y depositadas en las viviendas construidas fuera del mar. Una solución a este problema es utilizar un material que minimice el avance de las fisuras y grietas, como son las nanoplaquetas de beterraga azucarera (NPB); las cuales son residuos vegetales procedentes de la industria alimentaria. En la presente investigación se aborda el estudio de los bloques de concreto fisurados, estudiándose para ello algunas propiedades mecánicas, físicas y químicas; los resultados muestran que con la adición de NPB la resistencia a la compresión y flexión aumentan, y la absorción y carbonatación disminuyen cuando se comparan con el concreto sin nanoaditivo. / The most important pathological manifestations in the concrete blocks of the armed masonry are the efflorescence and the fissures; the former are aesthetic and the latter are structural. These pathologies are caused by the porosity of the block; which facilitates the entry of salts from the sea breeze and salt mist present in the marine atmosphere. These salts, as a result of the wind are dragged and deposited in homes built outside the sea. A solution to this problem is to use a material that minimizes the progress of fissures and cracks, such as sugar beet nanoplatelets (BNP); which are plant residues from the food industry. In the present investigation the study of cracked concrete blocks is approached, studying some mechanical, physical and chemical properties; the results show that with the addition of BNP the compressive strength increases, and the absorption and carbonation decrease when compared to concrete without nanoadditive. / Tesis
42

Investigating the Ability to Preheat and Ignite Energetic Materials Using Electrically Conductive Materials

Marlon D Walls Jr. (9148682) 29 July 2020 (has links)
<div>The work discussed in this document seeks to integrate conductive additives with energetic material systems to offer an alternative source of ignition for the energetic material. By utilizing the conductive properties of the additives, ohmic heating may serve as a method for preheating and igniting an energetic material. This would allow for controlled ignition of the energetic material without the use of a traditional ignition source, and could also result in easier system fabrication.</div><div>For ohmic heating to be a viable method of preheating or igniting these conductive energetic materials, there cannot be significant impact on the energetic properties of the energetic materials. Various mass solids loadings of graphene nanoplatelets (GNPs) were mixed with a reactive mixture of aluminum (Al)/polyvinylidene fluoride (PVDF) to test if ohmic heating ignition was feasible and to inspect the impact that these loadings had on the energetic properties of the Al/PVDF. Results showed that while ohmic heating was a plausible method for igniting the conductive energetic samples, the addition of GNPs degraded the energetic properties of the Al/PVDF. The severity of this degradation was minimized at lower solids loadings of GNPs, but this consequently resulted in larger voltage input requirements to ignite the conductive energetic material. This was attributable to the decreased conductivities of the samples at lower solids loading of GNPs.</div><div>In hopes of conserving the energetic properties of the Al/PVDF while integrating the conductive additives, additive manufacturing techniques, more specifically fused filament fabrication, was used to print two distinct materials, Al/PVDF and a conductive composite, into singular parts. A CraftBot 3 was used to selectively deposit Conductive Graphene PLA (Black Magic) filament with a reactive filament comprised of a PVDF binder with 20% mass solids loadings of aluminum. Various amounts of voltage were applied to these conductive energetic samples to quantify the time to ignition of the Al/PVDF as the applied voltage increased. A negative correlation was discovered between the applied voltage and time to ignition. This result was imperative for demonstrating that the reaction rate could be influenced with the application of higher applied voltages.</div><div>Fused filament fabrication was also used to demonstrate the scalability of the dual printed conductive energetic materials. A flexural test specimen made of the Al/PVDF was printed with an embedded strain gauge made of the Black Magic filament. This printed strain gauge was tested for dual purposes: as an igniter and as a strain sensor, demonstrating the multi-functional use of integrating conductive additives with energetic materials.</div><div>In all, the experiments in this document lay a foundation for utilizing conductive additives with energetic materials to offer an alternative form of ignition. Going forward, ohmic heating ignition may serve as a replacement to current, outdated methods of ignition for heat sensitive energetic materials.</div>
43

Brightly Luminescent Core/Shell Nanoplatelets with Continuously Tunable Optical Properties Title

Meerbach, Christian, Tietze, Remo, Voigt, Sascha, Sayevich, Vladimir, Dzhagan, Volodymyr M., Erwin, Steven C., Dang, Zhiya, Selyshchev, Oleksandr, Schneider, Kristian, Zahn, Dietrich R.T., Lesnyak, Vladimir, Eychmüller, Alexander 19 July 2019 (has links)
A straightforward, rapid method to create colloidally stable and brightly luminescent core/shell CdSe-based nanoplatelets (NPLs) with fluorescence quantum yields (QYs) up to 50% is demonstrated. A layer-by-layer deposition technique based on a two-phase mixture ‒ consisting of a nonpolar phase which includes the NPLs, and a saturated ionic polar phase ‒ to separate the reagents and hinder the nucleation of the shell material is used. The deposition of the first sulfur layer leads to a significant red-shift (by more than 100 nm) of the optical absorption and emission of the NPLs. Hence, by varying either the sulfur precursor content or the reaction time one can precisely and continuously tune the absorption and emission maxima from 520 to 630 nm. This evolution of the absorption onset during the shell growth is explained quantitatively using density-functional theory and atomistic statistical simulations. The emission can be further enhanced by exposure of the NPL solution to ambient sunlight. Finally, it is demonstrated that the core/shell NPLs can be transferred from the organic solution to aqueous media with no reduction of their QY that opens the door to a broad range of practical applications.
44

Robust Polymer Matrix Based on Isobutylene (Co)polymers for Efficient Encapsulation of Colloidal Semiconductor Nanocrystals

Shiman, Dmitriy I., Sayevich, Vladimir, Meerbach, Christian, Nikishau, Pavel A., Vasilenko, Irina V., Gaponik, Nikolai, Kostjuk, Sergei V., Lesnyak, Vladimir 01 April 2021 (has links)
We introduce new oxygen- and moisture-proof polymer matrixes based on polyisobutylene (PIB) and its block copolymer with styrene [poly(styrene-block-isobutylene-blockstyrene), PSt-b-PIB-b-PSt] for the encapsulation of colloidal semiconductor nanocrystals. In order to prepare transparent and processable composites, we developed a special procedure of nanocrystal surface engineering including ligand exchange of parental organic ligands to inorganic species followed by the attachment of specially designed short-chain PIB functionalized with an amino group. The latter provides excellent compatibility of the particles with the polymer matrixes. As colloidal nanocrystals, we chose CdSe nanoplatelets (NPLs) because they possess a large surface and thus are very sensitive to the environment, in particular in terms of their limited photostability. The encapsulation strategy is quite general and can be applied to a wide variety of semiconductor nanocrystals, as demonstrated on the example of PbS quantum dots. All obtained composites exhibited excellent photostability, being tested in a focus of a powerful white-light source, as well as exceptional chemical stability in a strongly acidic media. We compared these properties of the new composites with those of widely used polyacrylate-based materials, demonstrating the superiority of the former. The developed composites are of particular interest for application in optoelectronic devices, such as color-conversion light-emitting diodes, laser diodes, luminescent solar concentrators, etc.

Page generated in 0.0463 seconds