• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 5
  • 3
  • Tagged with
  • 45
  • 18
  • 12
  • 11
  • 10
  • 9
  • 9
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Engineering Nanoarchitectures from Nanosheets, Nanoscrolls, and Nanoparticles

Rostamzadeh, Taha 10 August 2016 (has links)
The ability to encapsulate/insert different kinds of nanoparticles (NPs) in scrolled nanosheets (NSs) may lead to the formation of new nanocomposite materials that yield novel properties. These nanostructures resemble “peapods” that consist of NPs chains (“peas”) located in a hollow space of desired nanoscrolls (“pods”). Depending on different combinations of “peas” and “pods” diverse families of nanopeapods (NPPs) can be synthesized which may exhibit interesting properties not accessible from the individual components. Though there exist various synthetic methods for the formation of NPPs, more development in terms of simplicity, flexibility, and productivity of synthetic approaches are needed so that different classes of NPPs with unique combinations/characteristics of “peas” and “pods” can be synthesized. A simple solvothermal synthesis method for the encapsulation of spherical Fe3O4 NPs by the capture of preformed NPs in scrolled hexaniobate has previously been developed in our group. In the first part of this research, efforts were made to extend the “pod” materials to other inorganic NScs. Vanadate nanoscrolls (NScs) could rapidly (2h) be produced using a simple solvothermal treatment in the presence of V2O5 as vanadium source, and either dodecylamine (DDA) or octadecylamine (ODA) as the structure-directing agent. The synthesis parameters were successfully adjusted to obtain high yields vanadate NScs (~ 20 g of NScs per synthesis) with different average lengths as 383 nm, 816 nm to 3.3 µm. The effects of reaction time on the formation of NScs were also investigated. Further efforts focused on the development of methods for making vanadate NPPs. Here, two novel approaches for the formation of these NPPs have been successfully developed. In the first, solvothermal methods utilizing preformed Ag NPs and vanadate NSs lead to the formation of Ag@vanadate NPPs where NPs could be encapsulated during the scrolling of NSs. High NP loadings were acquired with this approach. In the second method, an insertion strategy was developed where Ag NPs were drawn into the lumen of preformed vanadate NScs upon controlled solvent evaporation. This method was also quite effective, though much lower loadings of NPs were achieved with larger average NP-NP distances. Also noteworthy in the study of vanadate NScs and NPPs is the observation of an uncommon asymmetric scrolling behavior; this was realized for both vanadate NScs and solvothermally synthesized Ag@vanadate NPPs. Novel solvothermal approaches for the effective construction of organic-MoOx hybrid structures and MoOx nanosheets (NSs) have also been developed. These NSs can be controlled so as to exist in different oxidation states as well as in different crystal structures. Layer spacing as a function of organic molecule lengths could also be controlled by changing the type of surfactants located between the NSs. Individual NSs or a few layers of stacked NSs, up to four micrometers in lateral size were successfully prepared upon sonication. The effect of time, temperature, as well as the type of structure-directing agents on the formation and crystal structure of MoOx intercalated compound/NSs were also explored. Lastly, a modified solvothermal method previously used for the encapsulation of spherical Fe3O4 NPs inside hexaniobate NScs was applied for the construction of cubic-CeO2 NPPs. High yield encapsulations of preformed cubic ~5 nm ceria NPs within the lumen of hexaniobate NScs were readily accomplished. Size selective encapsulation and the formation mechanism of cubic-CeO2 NPPs were also studied. Pre-organization and attachment of ceria NPs to the surface/edges of hexaniobate crystals prior to the scrolling process were observed, which is in a good agreement with our previous studies on the formation mechanism of NPPs. Partially filled CeO2@hexaniobate NPPs were further used in the in-situ growth of gold NPs within the empty/hollow space of hexaniobate NScs. This led to the formation of high-quality Au-CeO2@hexaniobate NPPs. We believe that smart combinations of the methods for the formation of NPPs, encapsulation, in-situ growth and insertion, will allow one to acquire other classes of nanocomposite materials composed of different types, shapes, and arrangements of NPs in the hollow spaces of distinct NTs/NScs.
12

Processing and Properties of 1D and 2D Boron Nitride Nanomaterials Reinforced Glass Composites / Processing and Properties of 1D and 2D Boron Nitride Nanomaterials Reinforced Glass Composites

Saggar, Richa January 2016 (has links)
Glasses and ceramics offer several unique characteristics over polymers or metals. However, they suffer from a shortcoming due to their brittle nature, falling short in terms of fracture toughness and mechanical strength. The aim of this work is to reinforce borosilicate glass matrix with reinforcements to increase the fracture toughness and strength of the glass. Boron nitride nanomaterials, i.e. nanotubes and nanosheets have been used as possible reinforcements for the borosilicate glass matrix. The tasks of the thesis are many fold which include: 1. Reinforcement of commercially derived and morphologically different (bamboo like and cylinder like) boron nitride nanotubes in borosilicate glass with the concentration of 0 wt%, 2.5 wt% and 5 wt% by ball milling process. Same process was repeated with reinforcing cleaned boron nitride nanotubes (after acid purification) into the borosilicate glass with similar concentrations. 2. Production of boron nitride nanosheets using liquid exfoliation technique to produce high quality and high aspect ratio nanosheets. These boron nitride nanosheets were reinforced in the borosilicate glass matrix with concentrations of 0 wt%, 2.5 wt% and 5 wt% by ball milling process. The samples were consolidated using spark plasma sintering. These composites were studied in details in terms of material analysis like thermo-gravimetric analysis, detailed scanning electron microscopy and transmission electron microscopy for the quality of reinforcements etc.; microstructure analysis which include the detailed study of the composite powder samples, the densities of bulk composite samples etc; mechanical properties which include fracture toughness, flexural strength, micro-hardness, Young’s modulus etc. and; tribological properties like scratch resistance and wear resistance. Cleaning process of boron nitride nanotubes lead to reduction in the Fe content (present in boron nitride nanotubes during their production as a catalyst) by ~54%. This leads to an improvement of ~30% of fracture toughness measured by chevron notch technique for 5 wt% boron nitride nanotubes reinforced borosilicate glass. It also contributed to the improvement of scratch resistance by ~26% for the 5 wt% boron nitride nanotubes reinforced borosilicate glass matrix. On the other hand, boron nitride nanosheets were successfully produced using liquid exfoliation technique with average length was ~0.5 µm and thickness of the nanosheets was between 4-30 layers. It accounted to an improvement of ~45% for both fracture toughness and flexural strength by reinforcing 5 wt% of boron nitride nanosheets. The wear rates reduced by ~3 times while the coefficient of friction was reduced by ~23% for 5 wt% boron nitride nanosheets reinforcements. Resulting improvements in fracture toughness and flexural strength in the composite materials were observed due to high interfacial bonding between the boron nitride nanomaterials and borosilicate glass matrix resulting in efficient load transfer. Several toughening and strengthening mechanisms like crack bridging, crack deflection and significant pull-out were observed in the matrix. It was also observed that the 2D reinforcement served as more promising candidate for reinforcements compared to 1D reinforcements. It was due to several geometrical advantages like high surface area, rougher surface morphology, and better hindrance in two dimensions rather than just one dimension in nanotubes.
13

2D/3D Alumina Nanoplatelet Slit-Pore Membranes.

He, Yiting 17 December 2019 (has links)
Abstract: Oil pollution and spills cause serious damage to marine ecosystems and coastal environments. Currently, oily waters recuperated form a spill must be shipped onshore for treatment. This limits the volume of water that can be treated during a spill. There is a need to develop technologies to treat oily waters below 15 ppm (parts per million) at the site of the spill. Synthetic membrane technologies are widely used in water treatment and purification. They can offer an on-site solution to contaminated oily water treatment in oil production and spills. The suitability of a membrane for use in this application is determined by the type of material used in its fabrication. Compared to polymeric membranes, inorganic membranes are inert to microbiological degradation, offer high chemical and thermal resistance, and can easily be backflushed and cleaned once fouled. However, inorganic membranes consisting of metal oxides are heavier and more expensive than polymeric membranes, due to their bulky and brittle ceramic support layers. This limits their application when the overall weight of a process unit is of concern. A newly developed 2D/3D material, named twinned alumina nanosheets (TAN), has recently been used to make dynamic membranes. The nanoplatelets forming TAN have a length of 4 µm, a width of 1 µm, and a thickness of 100 nm. They have a very high permeability, a 0.2 µm-pore size and a porosity up to 88% due to their low nanosheet volume. These unique characteristics make TAN a very promising material to form membrane selective layers. However, they must be supported on a very open layer in order to take advantage of their high porosity. In this work, a composite membrane was produced with a selective layer of 2D/3D alumina nanoplatelets deposited onto stainless steel meshes and ceramic supports. The structure of the TAN in the selective layer was reinforced with binders. The main objective of this work was to verify the adhesion of the TANs onto the support. The crystallization of TAN was optimized to obtain an open 2D/3D structure. This structure was then deposited on a stainless-steel mesh. The mesh was pretreated by electrochemical etching to achieve a re-entrant surface. The mesh was immersed in an etching solution and placed parallel to a conductive graphite plate under a constant electric potential of 5V for 4 min. Aqueous solutions of silica sol and colloidal silver were tested as binding agents. They were deposited on the mesh with TAN and sintered for 4 hrs. Experiments were performed on testing stainless steel meshes with different opening sizes and comparing different calcination temperatures. The best sintering temperature was 800°C for a mesh with an opening size of 35µm. The synthesized membrane was challenged with a suspension of 10 ppm bentonite clay at a constant pressure of 100 mbar. The integral structure of a TAN membrane produced with a 2.5wt% silica binder was maintained after backflushing. The 2.5wt% silica membrane had a high flux and the particle filtration process for this membrane was modelled as pore constriction and intermediate blocking, indicating that backflushing provided the deep cleaning of pores. According to the SEM images, the 2.5wt% silica membrane preserved the integral structure of the TAN, while the pores tended to fill with silica at higher silica concentrations. The effective pore size of the 2.5wt% silica membrane was estimated to be the smallest, which is approximately 0.53 μm. The 7.5wt% silica membrane had half the permeate flux of the other membranes, because of the high concentration of binder filling the pores of the TAN selective layer. The SiO 2 binder had a positive effect in reinforcing the TAN particles. The flux of the membrane did not increase after backflushing indicating that the selective layer of the membrane was securely bound to the stainless steel mesh. The membrane exhibited flux decline between backflushings indicating that particles were retained on its surface. SEM images taken after the filtration showed that this membrane completely released bentonite particles form its pores. Tests were also performed with a membrane having two TAN coatings on the wire mesh. This reduced the flux but did not improve the retention of fine particles. Colloidal silver was found to be a poor binding agent as particles were released particles from its selective layer. Silica was a highly successful binding agent while colloidal silver was not. TAN was also successfully deposited onto ceramic supports. It was also retained on top of the membrane after backflushing. The results of this work demonstrate that TANs reinforced and bound with silica are a promising type of material to form membrane selective layers. These layers have an open pore structure with a three-dimensional channel connectivity on both stainless steel and ceramic supports. The selective layer was successfully bound to the stainless steel supports. If the pore size of this membrane were to be reduced, it would meet the requirements for use at the site of an oil spill to treat contaminated waters as it does not need the heavier supports found in traditional ceramic membranes. Résumé: La pollution et les déversements d'hydrocarbures causent de graves dommages aux écosystèmes marins et aux environnements côtiers. À l'heure actuelle, les eaux huileuses récupérées d'un déversement doivent être expédiées à terre pour leur décontamination. Ceci limite le volume d’eau contaminé qui peut être traité. Il est nécessaire de développer des technologies permettant de traiter les eaux huileuses en dessous de 15 ppm (parties par million) sur le site du déversement. Les technologies membranaires sont largement utilisées dans le traitement et la purification de l'eau. La possibilité de se servir d’une membrane dans cette application est déterminée par les matériaux utilisés dans sa fabrication. Comparées aux membranes polymères, les membranes inorganiques sont inertes vis-à-vis de la dégradation microbiologique, offrent une résistance chimique et thermique élevée et peuvent facilement être rincées et nettoyées une fois encrassées. Cependant, les membranes inorganiques constituées d'oxydes métalliques sont plus lourdes et plus coûteuses que les membranes polymères, en raison de leurs couches de support en céramique volumineuses et cassantes. Cela limite leur application lorsque le poids total d'une unité de traitement est préoccupant. Un matériau 2D/3D récemment développé, appelé TAN (Twinned Alumina Nanosheets), a récemment été utilisé dans la formation de membranes dynamiques. Les nano-plaquettes formant les TAN ont une longueur de 4 µm, une largeur de 1 µm et une épaisseur de 100 nm. Ils ont une très haute perméabilité, une taille de pores de 0,2 µm et une porosité allant jusqu'à 88% en raison du faible volume des nanofeuilles. Ces caractéristiques uniques font du TAN un matériau très prometteur pour la formation de couches sélectives de membranes. Cependant, ils doivent être déposes sur une couche très ouverte afin de tirer parti de leur grande porosité. Au cours de ce travail, une membrane composite a été réalisée avec une couche sélective de nanoplaques d’alumine 2D / 3D (TAN) déposées sur deux types de supports; des mailles en acier inoxydable et des supports en céramique. La structure du TAN dans la couche sélective a été renforcée avec des liants. L'objectif principal de ce travail était de vérifier l'adhérence des TAN sur le support. La cristallisation des TAN a été optimisée pour obtenir une structure 2D/3D ouverte. Cette structure a ensuite été déposée sur un treillis en acier inoxydable. Les mailles ont été prétraitées pour obtenir une surface réentrante. Le maillage a été immergé dans une solution de gravure et placé parallèlement à une plaque de graphite conductrice sous un potentiel électrique constant de 5 V pendant 4 min. Des solutions aqueuses de sol de silice et d’argent colloïdal ont été testées en tant que liants. Ils ont été déposés sur la maille et frittés pendant 4 heures. Des expériences ont été effectuées sur des mailles en acier inoxydable avec différentes tailles d’ouverture et températures de calcination. La meilleure température de frittage était de 800 ° C pour un treillis ayant une taille d'ouverture de 35 µm. La membrane synthétisée a été mise à l’essai avec une suspension de 10 ppm d'argile bentonite à une pression constante de 100 mbar. La structure intégrale de la membrane couche de TAN produite avec un liant à 2,5wt% de silice a été maintenue après les tests de perméabilité. La structure 3D poreuse a tendance à se remplir de silice à des concentrations de silice supérieures à 2,5wt%. La taille effective des pores de la membrane produite avec 2,5wt% de liant de silice a été estimée à 0,53 µm. Le flux de la membrane n'a pas augmenté après le rinçage, indiquant que la couche sélective de la membrane était liée de manière sûre au maillage en acier inoxydable. La membrane présentait un déclin de flux entre les rinçages indiquant que des particules étaient retenues à sa surface. Les images au microscope à balayage prises après la filtration ont montré que cette membrane libère complètement les particules de bentonite de ses pores. Des essais ont également été réalisés avec une membrane comportant deux revêtements TAN sur le treillis métallique. Cela réduit le flux mais n'améliore pas la rétention des particules fines. L'argent colloïdal s'est avéré être un agent de liaison médiocre car des particules sont libérées de sa couche sélective. La silice était un liant très efficace, contrairement à l'argent colloïdal. Le TAN a également été déposé avec succès sur des supports en céramique. Il est également resté sur la membrane après le rinçage à contre-courant. Les résultats de ce travail démontrent que les TAN renforcés avec un liant de silice sont un type de matériau prometteur pour former des couches sélectives, avec des structures à pores ouverts possédant une connectivité de canal tridimensionnelle, sur des supports en acier inoxydable et en céramique. La couche sélective a été liée avec succès au support en acier inoxydable. Si la taille des pores de cette membrane devait être réduite, elle pourrait être utilisée sur le site d'un déversement d'hydrocarbures pour traiter les eaux contaminées car elle ne nécessite pas les supports plus lourds que l'on trouve dans les membranes de céramique traditionnelles.
14

Synthesis and Optical Properties of Colloidal PbS Nanosheets

Premathilaka, Shashini M. 06 August 2019 (has links)
No description available.
15

Synthesis and AB-Initio Simulations of Colloidal PBS Nanosheets

Bhandari, Ghadendra B. 16 July 2014 (has links)
No description available.
16

MFI-Type Zeolite Nanosheets Laminated Membranes for Ion Separation in Aqueous Solutions

Cao, Zishu 27 September 2020 (has links)
No description available.
17

Functionalized Nanostructures : Iron Oxide Nanocrystals and Exfoliated Inorganic Nanosheets

Chalasani, Rajesh January 2013 (has links) (PDF)
This thesis consists of two parts. The first part deals with the magnetic properties of Fe3O4 nanocrystals and their possible application in water remediation. The second part is on the delamination of layered materials and the preparation of new layered hybrids from the delaminated sheets. In recent years, nanoscale magnetic particles have attracted considerable attention because of their potential applications in industry, medicine and environmental remediation. The most commonly studied magnetic nanoparticles are metals, bimetals and metal oxides. Of these, magnetite, Fe3O4, nanoparticles have been the most intensively investigated as they are, non-toxic, stable and easy to synthesize. Magnetic properties of nanoparticles such as the saturation magnetization, coercivity and blocking temperature are influenced both by size and shape. Below a critical size magnetic particles can become single domain and above a critical temperature (T B , the blocking temperature) thermal fluctuations can induce random flipping of magnetic moments resulting in loss of magnetic order. At temperatures above the blocking temperature the particles are superparamagnetic. Magnetic nanocrystals of similar dimensions but with different shapes show variation in magnetic properties especially in the value of the blocking temperature, because of differences in the surface anisotropy contribution. The properties of magnetic nanoparticles are briefly reviewed in Chapter 1. The objective of the present study was to synthesize Fe3O4 nanocrystals of different morphologies, to understand the difference in magnetic properties associated with shape and to explore the possibility of using Fe3O4 nanocrystals in water remediation. In the present study, oleate capped magnetite (Fe3O4) nanocrystals of spherical and cubic morphologies of comparable dimensions (∼10nm) have been synthesized by thermal decomposition of FeOOH in high-boiling octadecene solvent (Chapter 2). The nanocrystals were characterized by XRD, TEM and XPS spectroscopy. The nanoparticles of different morphologies exhibit very different blocking temperatures. Cubic nanocrystals have a higher blocking temperature (T B = 190 K) as compared to spheres (T B = 142 K). From the shift in the hysteresis loop it is demonstrated that the higher blocking temperature is a consequence of exchange bias or exchange anisotropy that manifests when a ferromagnetic material is in physical contact with an antiferromagnetic material. In nanoparticles, the presence of an exchange bias field leads to higher blocking temperatures T B because of the magnetic exchange coupling induced at the interface between the ferromagnet and antiferromagnet. It is shown that in these iron oxide nanocrystals the exchange bias field originates from trace amounts of the antiferromagnet wustite, FeO, present along with the ferrimagnetic Fe3O4 phase. It is also shown that the higher FeO content in nanocrystals of cubic morphology is responsible for the larger exchange bias fields that in turn lead to a higher blocking temperature. Magnetic nanoparticles with moderate magnetization can be easily separated from dispersions by applying low intensity magnetic fields. Oleate capped spherical and cubic iron oxide nanocrystals have considerable magnetic moment and hence have the potential as host-carriers for magnetic separation in environmental remediation. These nanocrystals are, however, dispersible only in non-polar solvents like chloroform, toluene, etc. Environmental remediation requires that the nanocrystals be water dispersible. This was achieved by functionalizing the surface of the iron oxide nanocrystals by coordinating carboxymethyl-β-cyclodextrin (CMCD) cavities (Chapter 3). The hydroxyl groups located at the rim of the anchored cyclodextrin cavity renders the surface of the functionalized nanocrystal hydrophilic. The integrity of the anchored CMCD molecules are preserved on capping and their hydrophobic cavities available for host-guest chemistry. The CMCD capped iron oxide particles are water dispersible and separable in modest magnetic fields (<0.5 T). Small molecules like naphthalene and naphthol can be removed from aqueous media by forming inclusion complexes with the anchored cavities of the CMCD-Fe3O4 nanocrystals followed by separation of the nanocrystals by application of a magnetic field. The adsorption properties of the iron oxide surface towards arsenic ions are unaffected by the CMCD capping so it too can be simultaneously removed in the separation process. To extend the application of the iron oxide nanocrystals so that they can both capture and destroy organic contaminants present in water, cyclodextrin functionalized water dispersible core-shell Fe3O4@TiO2 (CMCD-Fe3O4@TiO2) nanocrystals have been synthesized (Chapter 4). The application of these particles for the photocatalytic degradation of endocrine disrupting chemicals (EDC), bisphenol A and dibutyl phthalate, in water is demonstrated. EDC molecules that may be present in water are captured by the CMCD-Fe3O4@TiO2 nanoparticles by inclusion within the anchored cavities. Once included they are photocatalytically destroyed by the TiO2 shell on UV light illumination. The magnetism associated with the crystalline Fe3O4 core allows for the magnetic separation of the particles from the aqueous dispersion once photocatalytic degradation is complete. An attractive feature of these ‘capture and destroy’ nanomaterials is that they may be completely removed from the dispersion and reused with little or no loss of catalytic activity. The second part of the thesis deals with the intercalation of surfactants in inorganic layered solids and their subsequent delamination of the functionalized solid in non-polar solvents. The solids investigated were - the anionic layered double hydroxides (LDH), the 2:1 smectite clay, montmorillonite (MMT), layered metal thiophosphates (CdPS3) and graphite oxide (GO). Layered Double Hydroxides (LDH) are lamellar solids of the general chemical formula [M0(1−x)Mx(OH)2], where M0 is a divalent metal ion and M a trivalent ion. The structure of the Mg-Al layered double hydroxide (Mg-Al LDH) may be derived from that of brucite, Mg(OH)2, by isomorphous substitution of a part of the Mg2+ by trivalent Al3+ ions with electrical neutrality maintained by interlamellar exchangeable ions like nitrate or carbonate. The ion exchange intercalation of the anionic surfactant dodecyl sulfate (DDS) in an Mg-Al LDH and the subsequent delamination of the surfactant intercalated LDH in non-polar solvent is reviewed in Chapter 5. Delamination results in a clear dispersion of neutral nanosheets. The delaminated sheets are neutral as the surfactant chains remain anchored to the inorganic sheet. On solvent evaporation, the sheets re-stack to give back the original surfactant intercalated solid. This strategy for delamination of layered solids by intercalation of an appropriate surfactant followed by dispersing in a non-polar solvent has been extended to montmorillonite (MMT) and cadmium thiophosphates (CdPS3) by ion-exchange intercalation of the cationic surfactant dioctadecyldimethylammonium bromide (DODMA) followed by sonication in non-polar solvents e.g. toluene or chloroform as in the case of the LDH (Chapter 6). The nanosheets of the MMT and CdPS3 are electrically neutral as the surfactant chains remain anchored to the inorganic sheet even after exfoliation. Graphite oxide (GO) too can be delaminated by functionalizing the sheets by covalently linking oleylamine chains to the GO sheets via an amide bond. The oleylamine functionalized GO is easily delaminated in non-polar solvents to give electrically neutral GO nanosheets. It is shown in Chapter 7 that the 1:1 mixtures of dispersions of montmorillonite-DODMA with Mg-Al LDH-DDS nanosheets can self assemble, on solvent evaporation, to give a new layered solid with periodically alternating montmorillonite and LDH layers. In this method attractive forces between the neutral exfoliated nanosheets of cationic and anionic ensures self-assembly of a perfectly periodic alternating layered structure. The method has been extended to synthesize new layered solids in which surfactant tethered cationic and anionic inorganic sheets alternate. The hybrid solids synthesized are CdPS3—MgAl-LDH, CdPS3—CoAl-LDH, GO—MgAl-LDH, GO—CoAl-LDH. The procedure outlined in Chapter 7 allows for a simple, but versatile, method for generating new periodically ordered layered hybrid solids by self-assembly.
18

[en] HIGH DENSITY POLYETHYLENE (HDPE) NANOCOMPOSITES REINFORCED BY TITANATES NANOSHEETS SYNTHESIZED FROM ILMENITIC MINERAL SANDS / [pt] NANOCOMPÓSITOS COM MATRIZ DE POLIETILENO DE ALTA DENSIDADE (PEAD) REFORÇADOS POR NANOFOLHAS DE TITANATOS SINTETIZADAS A PARTIR DAS AREIAS MINERAIS ILMENÍTICAS

JULIANA MARQUES RESENDE 16 April 2019 (has links)
[pt] No intuito de desenvolver novas abordagens para a redução do coeficiente de expansão térmica (CTE) em PEAD, um polímero termoplástico largamente usado em geomembranas onde seu alto CTE contribui para a redução de seu desempenho, titanatos em camadas na forma de nanofolhas foram testados pela primeira vez como os aditivos com esta função. Nanofolhas de titanatos foram sintetizadas a partir de tratamento hidrotérmico alcalino de areias ilmeníticas e foram funcionalizadas com viniltrimetoxisilano (VTMS), visando melhorar a compatibilidade com a matriz PEAD, ou organofilizadas com cloreto de dimetildioctadecilamonio (2C18), para promover a esfoliação/intercalação destas nanocargas no polímero. Posteriormente, estas nanocargas modificadas foram caracterizadas por termogravimetria, espectroscopia de infravermelho, análise de área superficial, análise de CHN, difração de raios-X e microscopia eletrônica de transmissão. Os nanocompósitos foram fabricados por microextrusão e microinjeção com porcentagens mássicas de carga de 0,5 por cento a 10 por cento, em séries denominadas BRANCA, VTMS, VTMS reativa e 2C18. Finalmente os nanocompósitos foram caracterizados através de ensaios de tração, termogravimetria, dilatometria e microscopia eletrônica de transmissão. Os resultados obtidos na caracterização das nanofolhas permitiram verificar a incorporação do VTMS na superfície por meio de ligações primárias. A modificação com 2C18 foi realizada pela primeira vez neste tipo de material, como foi conferido por difração de raios-X pelo incremento no espaçamento da distância interlamelar. As séries BRANCA e VTMS apresentaram um incremento no módulo de elasticidade e na ductilidade, porém a tensão no escoamento incrementou apenas para o compósito com 0,5 por cento da série BRANCA e para o compósito com 2 por cento da série VTMS. As séries VTMS reativa e 2C18 mostraram redução no módulo de elasticidade e ductilidade. A tensão no escoamento aumentou para o compósito da série VTMS Reativa 0,5 por cento, diminuiu para os compósitos 0,5 e 2 por cento da série 2C18 e permaneceu similar ao PEAD para os outros compósitos destas séries. O compósito que apresentou melhores propriedades foi o VTMS 2 por cento com um aumento em torno de 14 por cento no módulo de elasticidade, de aproximadamente 3 por cento na tensão no escoamento e de aproximadamente 16 por cento na ductilidade. A adição das nanofolhas não alterou significativamente as propriedades de estabilidade térmica da matriz e apresentou decréscimo do CET para a série VTMS 2 por cento. O grau de cristalinidade variou apresentando aumento máximo de aproximadamente 14 por cento na série VTMS 0,5 por cento e redução máxima de aproximadamente 20 por cento na série 2C18 2 por cento. / [en] In order to develop new approaches to the reduction of the coefficient of thermal expansion (CTE) in HDPE, a thermoplastic polymer widely used in geomembranes where its high CTE contributes to the reduction of his performance, in the form of layered titanates nanosheets were tested for the first time as additives with this function. Titanates nanosheets were synthesized from hydrothermal treatment of alkaline ilmenitic sands and were funcionalizated with vinyl trimethoxy silane (VTMS), to improve compatibility with the HDPE matrix, or organofilizated with dimethyl dioctadecyl amonio chloride (2C18), to promote the exfoliation/intercalation of these nanofiller in the polymer. Subsequently, these modified nanofiller were characterized by infrared spectroscopy, thermogravimetry, surface area analysis, CHN analysis, x-ray diffraction and transmission electron microscopy. The nanocomposites were manufactured by microextrusion and microinjection with mass percentages of 0,5 percent to charge 10 percent, in weigth, denominated series VTMS, reactive VTMS and 2C18. Finally the nanocomposites were characterized by tensile, thermogravimetry, dilatometry and transmission electron microscopy. The results obtained in the characterization of nanosheets allowed to check the incorporation of VTMS on the surface by means of primary links. The modifications with 2C18 was performed for the first time this type of material, as was conferred by x-ray diffraction by the increase in the distance interlamelar spacing. The series BRANCA and VTMS presented an increase in modulus of elasticity and ductility, however the voltage in outlets increased only to composite with 0,5 percent BRANCA and series for the composite with 2 percent VTMS series. VTMS series reactive and 2C18 showed a reduction in ductility and modulus. The tension in the flow increased to the series VTMS Reactive composite 0,5 percent, decreased to the composites 2 and 0,5 percent 2C18 series and remained similar to HDPE for the other composites of these series. Composite who presented best properties was the VTMS 2 percent with an increase around 14 percent in modulus, approximately 3 percent on voltage in outlets and approximately 16 percent on ductility. The addition of nanofolhas did not alter significantly the thermal stability properties of the array and fell of the CET for the series VTMS 2 percent. The degree of crystallinity ranged showing maximum increase of approximately 14 percent on 0,5 percent VTMS series and maximum reduction of approximately 20 percent in 2 percent 2C18 series.
19

Rhenium disulfide and rhenium-doped MoS2 thin films from single source precursors

Al-Dulaimi, Naktal January 2018 (has links)
The doping of rhenium into molybdenum disulfide was achieved by Aerosol Assisted Chemical Vapour Deposition (AACVD) from single source precursors. Rhenium can be studied as a model for immobilization of radioactive technetium-99 (99Tc) in MoS2. The metals Mo(IV), Re(IV), and Tc(IV) have similar ionic radii 0.65, 0.63 and 0.65 Å respectively, and their Shannon-Prewitt crystal radii 0.79, 0.77 and 0.79 Å Hence demonstrating the potential storage of nuclear waste in geologic like formations in of groundwater may be possible. The interaction between the nuclear waste forms and groundwater, which could lead to release and transport low concentrations or vapour of radionuclides to the near field, as a result, decomposition of engineered barriers. The molecular precursors [Mo(S2CNEt2)4], [Re3(μ-SiPr)3(SiPr)6], [Re(S2CC6H5)(S3CC6H5)2], and [Re2(μ-S)2(S2CNEt2)4] have been used to deposit Re-doped MoS2 thin films. Mo-doped ReS2 alloyed, polycrystalline thin films were synthesised using [Re(S2CC6H5)(S3CC6H5)2], [Mo(S2CNEt2)4] via AACVD, adding with a low concentration of Mo source for the first time . We reported as well a new way for production of ultrathin ReS2 nanosheets by coupling bottom up processing AACVD with top-down LPE. This is important in synthetic pathways for the production of rare transition dichalcogenide, also, our processing methodology is potentially scalable and thus could be a way to commercial exploitation. Characterisation of produced materials performed by pXRD, SEM, TEM, STEM, EDX, ICP and Raman spectroscopy.
20

Density Functional Theory Investigation Of Tio2 Anatase Nanosheets

Sayin, Ceren Sibel 01 October 2009 (has links) (PDF)
In this thesis, the electronic properties of nanosheets derived from TiO2 anatase structure which acts as a photocatalyst, are investigated using the density functional theory. We examine bulk constrained properties of the nanosheets derived from the (001) surface and obtain their optimized geometries. We investigate properties of lepidocrocite-type TiO2 nanosheets and nanotubes of different sizes formed by rolling the lepidocrocite nanosheets. We show that the stability and the band gaps of the considered nanotubes increase with increasing diameter. We also study adsorption of Aun clusters with (n=1,2,3,4) on the clean and oxygen depleted lepidocrocite surface. Through systematic investigation of various cases we conclude that Au preferres O vacancy sites rather than clean surface in accordance with previous metal adsorption studies on TiO2 surfaces. For the clean surface, we observe that Au clusters with an odd number of atoms are weakly bonded and metallizes the system while even number of Au atoms results in small band gap semiconductors with relatively higher binding energies.

Page generated in 0.0557 seconds