• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 5
  • 3
  • Tagged with
  • 45
  • 18
  • 12
  • 11
  • 10
  • 9
  • 9
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

[en] STUDY OF THE EXFOLIATION OF LEPIDOCROCITE-LIKE FERRITIATANATE NANOSHEETS WITH A DIMETHYLDIOCTADECYLAMMONIUM SALT AND THEIR APPLICATION IN THE POLYMER-BASED NANOCOMPOSITES / [pt] ESTUDO DA ESFOLIAÇÃO DE NANOFOLHAS DE FERRITITANATOS DE ESTRUTURA LEPIDOCROCÍTICA COM DIMETILDIOCTADECILAMÔNIO E SUA APLICAÇÃO EM NANOCOMPÓSITOS DE MATRIZ POLIMÉRICA

JULIANA BENTO VIOL 09 May 2016 (has links)
[pt] Nanofolhas de ferrititanato com estrutura tipo lepidocrocita foram sintetizadas a partir de um precursor de baixo custo (areia ilmenítica), via rota hidrotérmica alcalina. Dois tipos de nanofolhas com alto e baixo teor de sódio foram obtidos: a) nanofolhas sódicas (NaLTs) e b) nanofolhas protonizadas (pLTs), obtidas mediante uma reação rápida de troca-ácida à temperatura ambiente. As capacidades de troca catiônica de ambos os tipos de nanofolhas foram determinadas seguindo-se a norma C 837 da ASTM. Após a síntese desses dois nanomateriais com diferentes teores de sódio foi estudado o processo de esfoliação em camadas de espessura sub-nanométrica, sob agitação intensa à temperatura de 60 C, utilizando-se como o agente de esfoliação pela primeira vez numa estrutura lepidocrocítica o sal cloreto de dimetildioctadecilamônio (2C18), visando a posterior aplicação das nanofolhas esfoliadas como reforço em nanocompósitos de matriz polimérica. O intuito de aplicar estes reforços em uma matriz polimérica foi buscar uma dispersão mais homogênea das folhas esfoliadas, além do aumento da compatibilidade das nanocargas com a matriz polimérica pela presença dos grupos orgânicos do sal quimicamente ligados às nanofolhas e, consequentemente, o incremento das propriedades térmicas e mecânicas do material polimérico. Dependendo do teor de sódio, foram obtidas nanofolhas esfoliadas e/ou intercaladas que foram posteriormente caracterizadas por fotometria de chama, espetroscopia de infravermelho, área superficial específica por adsorção de N2, termogravimetria, difração de raios-X de alto ângulo, espalhamento de raios-X a baixo ângulo, microscopia de força atômica e microscopia eletrônica de transmissão. Para a fabricação dos nanocompósitos foram utilizadas duas matrizes: a) uma de PEAD puro e b) a outra de PEAD com adição de uma porcentagem baixa, e constante, de polietileno funcionalizado com anidrido maleico (PE-g-MA), sendo reforçadas com as nanocargas protonizadas virgens (pLTs) e esfoliadas (pLTs-o-2C18) nas concentrações de 1,0; 2,0 e 4,0 por cento p. Finalmente, foram avaliadas as propriedades mecânicas e térmicas dos nanocompósitos por meio de ensaios de tração, termogravimetria, calorimetria diferencial de varredura e dilatometria. Os nanocompósitos preparados com pLTs virgem e os fabricados com a adição de agente de acoplamento de PE-g-MA apresentaram um aumento no módulo de Young de aproximadamente 12,8 por cento e 5,1 por cento para cargas de 4 por cento e 2 por cento em peso de pLTs virgem, respectivamente. Os nanocompósitos, que apresentam o maior aumento no limite de escoamento foram os reforçados com 4 por cento p de nanofolhas esfoliada (pLTs-o-2C18). No entanto, estes materiais apresentam uma diminuição no módulo de Young de aproximadamente 12 por cento. Os nanocompósitos com o maior aumento no módulo de Young foram os preparados com 4 por cento p pLTs ( aproximadamente 12,8 por cento), enquanto sua tensão no escoamento também foi melhorada (um aumento de aproximadamente 4 por cento). A incorporação de nanofolhas não afetou significativamente as propriedades de estabilidade térmica da matriz e uma diminuição no coeficiente de expansão térmica de 4 a 5,5 por cento foi apenas observada para nanocompósitos preparados com pLTs virgens. O grau de cristalinidade diminuiu para todos os nanocompósitos fabricados, no qual variou de 2,17 até 26 por cento. / [en] Ferrititanate nanosheets with lepidocrocite-like structure were synthesized from a low cost precursor (ilmenite sand) through alkaline hydrothermal route. Two types of nanosheets with high and low-sodium content were obtained: a) sodium rich nanosheets (NaLTs) and b) protonated nanosheets (pLTs), obtained by a rapid acid-exchange reaction at room temperature. The cation exchange capacities of both types of nanosheets were determinated according ASTM C 837. After the synthesis of these two nanomaterials with different sodium levels, it was studied the exfoliation process to obtain monolayers of nanometric lateral dimensions under intensive stirring at 60 C, using dimethyldioctadecylammonium cloride (2C18) as the exfoliating agent of the lepidocrocite-like ferrititanate nanosheets for the first time, aiming the further application of the exfoliated nanosheets as reinforcement in polymer matrix nanocomposites. The purpose of the addition of these nanofillers within a polymer matrix is to obtain a more homogeneous dispersion of exfoliated nanosheets, as well as the improvement of the compatibility between nanofillers and the polymer matrix, due to the presence of the organic groups from 2C18, chemically attached to nanosheets and hence, to promote the an increase on mechanical and thermal properties of the polymeric matrix. Depending on the sodium content, it was obtained exfoliated and/or intercalated nanosheets that were further characterized by flame photometry, infrared spectroscopy, specific surface area by N2 adsorption, thermogravimetry, X-ray powder diffraction (XRPD) and of small angle X-ray scattering (SAXS), atomic force microscopy (AFM) and transmission electron microscopy (TEM). For the manufacturing of nanocomposites two types of matrices were used: a) neat high density polyethylene (HDPE) and b) HDPE with the addition of a low percentage of polyethylene-graft-maleic anhydride (PE-g-MA). Pristine nanosheets (pLTs) and exfoliated nanosheets (pLTs-O-2C18) were used as nanofillers at loadings of 1.0; 2.0 and 4.0 wt percent. Finally, we assessed the mechanical and thermal properties of the as-prepared nanocomposites through tensile tests, thermogravimetry analysis (TGA), differential scanning calorimetry (DSC) and dilatometry. Nanocomposites prepared with pristine pLTs and those manufactured with the addition of PE-g-MA coupling agent showed an increase on the Young modulus of about 12,8 percent and 5,1 percent for loadings of 4wt percent and 2 wt percent of pristine pLTs, respectively. The nanocomposites that present the highest increase on yield stress were reinforced with 4 wt percent of exfoliated nanosheets (pLTs-o-2C18). However, these materials presents a decrease in the Young modulus of about 12 percent. The nanocomposites with the highest increase on Young Modulus were those prepared with 4 wt percent of pristine ( about 12,8 percent), and the yield stress was also improved (increase of about 4 percent). The incorporation of nanosheets did not affect significantly the thermal stability properties of the matrix and a decrease on the coefficient of thermal expansion was solely observed for nanocomposites prepared with pristine pLTs. The degree of crystallinity decreased for all the manufactured nanocomposites, in the range of about 2,17 t-26 percent for nanocomposites prepared with pristine pLTs and those fabricated with the addition of PE-g-MA, respectively. up to about pLTs with the addition of PE-g-MA.
32

An interfacial engineering approach towards two-dimensional porous carbon hybrids for high performance energy storage and conversion

Lu, Chenbao, Liu, Shaohua, Zhang, Fan, Su, Yuezeng, Zou, Xiaoxin, Shi, Zhan, Li, Guodong, Zhuang, Xiaodong 17 July 2017 (has links) (PDF)
In order to improve the performance and fundamental understanding of conducting polymers, development of new nanotechnologies for engineering aggregated states and morphologies is one of the central focuses for conducting polymers. In this work, we demonstrated an interfacial engineering method for the rational synthesis of a two-dimensional (2D) polyaniline (PANI) nano-array and its corresponding nitrogen-doped porous carbon nanosheets. Not only was it easy to produce a sandwich-like 2D morphology, but also the thickness, anchored ions and produced various metal phosphides were easily and rationally engineered by controlling the composition of the aqueous layer. The novel structural features of these hybrids enabled outstanding electrochemical capacitor performance. The specific capacitance of the as-produced diiron phosphide embedded nitrogen-doped porous carbon nanosheets was calculated to be as high as 1098 F g−1 at 1 A g−1 and an extremely high specific capacitance of 611 F g−1 at 10 A g−1, outperforming state-of-the-art performance among porous carbon and metal-phosphide-based supercapacitors. We believe that this interfacial approach can be extended to the controllable synthesis of various 2D material coupled sandwich-like hybrid materials with potential applications in a wide range of areas.
33

Synthesis and Characterization of 1D & 2D Nanostructures : Performance Study for Nanogenerators and Sensors

Gaddam, Venkateswarlu January 2015 (has links) (PDF)
Recently, efforts have been made for self-powering the batteries and portable electronic devices by piezoelectric nanogenerators. The piezoelectric nanogenerators can work as a power source for nano-systems and also as an active sensor. The piezoelectric nanogenerator is a device that converts random mechanical energy into electrical energy by utilizing the semiconducting and piezoelectric properties. Also, the mechanical energy is always available in and around us for powering these nano devices. The aim of the present thesis work is to explore 1D and 2D ZnO nanostructures (nanorods and nanosheets) on metal alloy substrates for the development of piezoelectric nanogenerators in energy harvesting and sensors applications. Hydrothermal synthesis method was adopted for the growth of ZnO nanostructures. The nanogenerators were fabricated by using the optimized synthesis parameters and subsequently studied their performance for power generation and as an active speed sensor. These 1D and 2D nanostructures based nanogenerators have opened up a new window for the energy harvesting applications and sensors development. The thesis is divided into following six chapters. Chapter 1: This chapter gives a general introduction about energy harvesting devices such as nanogenerators, available energy sources, mechanical energy harvesting, ZnO material and the details on hydrothermal synthesis process. A brief literature survey on different applications of piezoelectric nanogenerators is also included. Chapter 2: A novel flexible metal alloy (Phynox) and its properties along with its applications are discussed in this chapter. Details on the synthesis of 1D ZnO nanorods on Phynox alloy substrate by hydrothermal method are presented. Further, the optimization of parameters such as growth temperature, seed layer annealing and substrate temperature effects on the synthesis of ZnO nanorods are discussed in detail. As-synthesized ZnO nanorods have been characterized using XRD, FE-SEM, TEM and XPS. Chapter 3: It reports on the fabrication of piezoelectric nanogenerator on Phynox alloy substrate as power generating device by harvesting the mechanical energy. Initially, the performance of the nanogenerator for power generation due to finger tip impacts was studied and subsequently its switching polarity test was also carried out. Output voltage measurements were carried out using the in-house developed experimental setup. Stability test was also carried out to see the robustness of the nanogenerator. Finally, the output voltage response of the nanogenerator was studied for its use as an active speed sensor. Chapter 4: Synthesis of Al doped 2D ZnO nanorsheets on Aluminum alloy (AA-6061) substrate by hydrothermal method is reported in this chapter. The optimized parameters such as growth temperature and growth time effects on the synthesis of ZnO nanosheets are discussed. As-synthesized ZnO nanosheets were characterized using XRD, FE-SEM, TEM and XPS. The Al doping in ZnO is confirmed by EDXS and XPS analysis. Chapter 5: Cost effective fabrication of Al doped 2D ZnO nanosheets based nanogenerator for direct current (DC) power generation is reported in this chapter. The performance of the nanogenerator for DC power generation due to finger tip impacts was studied and subsequently its switching polarity test was also carried out. Output voltage measurements were carried out using the in-house developed experimental setup. Stability test was also carried out to see the robustness of the nanogenerator. Finally, the DC output voltage response of the nanogenerator was studied for its use as an active speed sensor. Chapter 6: The first section summarizes the significant features of the work presented in this thesis. In the second section the scope for carrying out the further work is given.
34

Soft-Template Construction of 3D Macroporous Polypyrrole Scaffolds

Liu, Shaohua, Wang, Faxing, Dong, Renhao, Zhang, Tao, Zhang, Jian, Zheng, Zhikun, Mai, Yiyong, Feng, Xinliang 07 May 2018 (has links)
No description available.
35

COMPUTATIONAL DESIGN AND CHARACTERIZATION OF SILICENE NANOSTRUCTURES FOR ELECTRICAL AND THERMAL TRANSPORT APPLICATIONS

Osborn, Tim H. 05 June 2014 (has links)
No description available.
36

Synthesis and characterisation of metal (Fe, Ga, Y) doped alumina and gallium oxide nanostructures

Zhao, Yanyan January 2008 (has links)
It is well known that nanostructures possess unique electronic, optical, magnetic, ferroelectric and piezoelectric properties that are often superior to traditional bulk materials. In particular, one dimensional (1D) nanostructured inorganic materials including nanofibres, nanotubes and nanobelts have attracted considerable attention due to their distinctive geometries, novel physical and chemical properties, combined effects and their applications to numerous areas. Metal ion doping is a promising technique which can be utilized to control the properties of materials by intentionally introducing impurities or defects into a material. γ-Alumina (Al2O3), is one of the most important oxides due to its high surface area, mesoporous properties, chemical and thermal properties and its broad applications in adsorbents, composite materials, ceramics, catalysts and catalyst supports. γ-Alumina has been studied intensively over a long period of time. Recently, considerable work has been carried out on the synthesis of 1D γ-alumina nanostructures under various hydrothermal conditions; however, research on the doping of alumina nanostructures has not been forthcoming. Boehmite (γ-AlOOH) is a crucial precursor for the preparation of γ-Alumina and the morphology and size of the resultant alumina can be manipulated by controlling the growth of AlOOH. Gallium (Ga) is in the same group in the periodic table as aluminum. β-Gallium (III) oxide (β-Ga2O3), a wide band gap semiconductor, has long been known to exhibit conduction, luminescence and catalytic properties. Numerous techniques have been employed on the synthesis of gallium oxide in the early research. However, these techniques are plagued by inevitable problems. It is of great interest to explore the synthesis of gallium oxide via a low temperature hydrothermal route, which is economically efficient and environmentally friendly. The overall objectives of this study were: 1) the investigation of the effect of dopants on the morphology, size and properties of metal ion doped 1D alumina nanostructures by introducing dopant to the AlOOH structure; 2) the investigation of impacts of hydrothermal conditions and surfactants on the crystal growth of gallium oxide nanostructures. To achieve the above objectives, trivalent metal elements such as iron, gallium and yttrium were employed as dopants in the study of doped alumina nanostructures. In addition, the effect of various parameters that may affect the growth of gallium oxide crystals including temperature, pH, and the experimental procedure as well as different types of surfactants were systematically investigated. The main contributions of this study are: 1) the systematic and in-depth investigation of the crystal growth and the morphology control of iron, gallium and yttrium doped boehmite (AlOOH) under varying hydrothermal conditions, as a result, a new soft-chemistry synthesis route for the preparation of one dimensional alumina/boehmite nanofibres and nanotubes was invented; 2) systematic investigation of the crystal growth and morphology and size changes of gallium oxide hydroxide (GaOOH) under varying hydrothermal conditions with and without surfactant at low temperature; We invented a green hydrothermal route for the preparation of α-GaOOH or β-GaOOH micro- to nano-scaled particles; invented a simple hydrothermal route for the direct preparation of γ-Ga2O3 from aqueous media at low temperature without any calcination. The study provided detailed synthesis routes as well as quantitative property data of final products which are necessary for their potential industrial applications in the future. The following are the main areas and findings presented in the study: • Fe doped boehmite nanostructures This work was undertaken at 120ºC using PEO surfactant through a hydrothermal synthesis route by adding fresh iron doped aluminium hydrate at regular intervals of 2 days. The effect of dopant iron, iron percentage and experimental procedure on the morphology and size of boehmite were systematically studied. Iron doped boehmite nanofibres were formed in all samples with iron contents no more than 10%. Nanosheets and nanotubes together with an iron rich phase were formed in 20% iron doped boehmite sample. A change in synthesis procedure resulted in the formation of hematite large crystals. The resultant nanomaterials were characterized by a combination of XRD, TEM, EDX, SAED and N2 adsorption analysis. • Growth of pure boehmite nanofibres/nanotubes The growth of pure boehmite nanofibres/nanotubes under different hydrothermal conditions at 100ºC with and without PEO surfactant was systematically studied to provide further information for the following studies of the growth of Ga and Y doped boehmite. Results showed that adding fresh aluminium hydrate precipitate in a regular interval resulted in the formation of a mixture of long and short 1D boehmite nanostructures rather than the formation of relatively longer nanofibres/nanotubes. The detailed discussion and mechanism on the growth of boehmite nanostructure were presented. The resultant boehmite samples were also characterized by N2 adsorption to provide further information on the surface properties to support the proposed mechanism. • Ga doped boehmite nanostructures Based on this study on the growth of pure boehmite nanofibre/nanotubes, gallium doped boehmite nanotubes were prepared via hydrothermal treatment at 100ºC in the presence of PEO surfactant without adding any fresh aluminium hydrate precipitate during the hydrothermal treatment. The effect of dopant gallium, gallium percentage, temperature and experimental procedure on the morphology and size of boehmite was systematically studied. Various morphologies of boehmite nanostructures were formed with the increase in the doping gallium content and the change in synthesis procedure. The resultant gallium doped boehmite nanostructures were characterized by TEM, XRD, EDX, SAED, N2 adsorption and TGA. • Y doped boehmite nanostructures Following the same synthesis route as that for gallium doped boehmite, yttrium doped boehmite nanostructures were prepared at 100ºC in the presence of PEO surfactant. From the study on iron and gallium doped boehmite nanostructures, it was noted both iron and gallium cannot grow with boehmite nanostructure if iron nitrate and gallium nitrate were not mixed with aluminium nitrate before dissolving in water, in particular, gallium and aluminium are 100% miscible. Therefore, it’s not necessary to study the mixing procedure or synthesis route on the formation of yttrium doped boehmite nanostructures in this work. The effect of dopant yttrium, yttrium percentage, temperature and surfactant on the morphology and size of boehmite were systematically studied. Nanofibres were formed in all samples with varying doped Y% treated at 100ºC; large Y(OH)3 crystals were also formed at high doping Y percentage. Treatment at elevated temperatures resulted in remarkable changes in size and morphology for samples with the same doping Y content. The resultant yttrium doped boehmite nanostructures were characterized by TEM, XRD, EDX, SAED, N2 adsorption and TGA. • The synthesis of Gallium oxide hydroxide and gallium oxide with surfactant In this study, the growth of gallium oxide hydroxide under various hydrothermal conditions in the presence of different types of surfactants was systematically studied. Nano- to micro-sized gallium oxide hydroxide was prepared. The effect of surfactant and synthesis procedure on the morphology of the resultant gallium oxide hydroxide was studied. β-gallium oxide nanorods were derived from gallium oxide hydroxide by calcination at 900ºC and the initial morphology was retained. γ-gallium oxide nanotubes up to 65 nm in length, with internal and external diameters of around 0.8 and 3.0 nm, were synthesized directly in solution with and without surfactant. The resultant nano- to micro-sized structures were characterized by XRD, TEM, SAED, EDX and N2 adsorption. • The synthesis of gallium oxide hydroxide without surfactant The aim of this study is to explore a green synthesis route for the preparation of gallium oxide hydroxide or gallium oxide via hydrothermal treatment at low temperature. Micro to nano sized GaOOH nanorods and particles were prepared under varying hydrothermal conditions without any surfactant. The resultant GaOOH nanomaterials were characterized by XRD, TEM, SAED, EDX, TG and FT-IR. The growth mechanism of GaOOH crystals was proposed.
37

Bio-inspired Materials : Antioxidant and Phosphotriesterase Nanozymes

Vernekar, Amit A January 2014 (has links) (PDF)
Bio-inspired or biomimetic chemistry deals with the replication of the nature’s fundamental processes, which can help in understanding the functioning of biological systems and develop novel applications. Although a large number of researchers worked towards the replication of natural synthetic pathways through biogenetic syntheses, enzyme mimicry by the small organic molecules and inorganic complexes emerged in leaps and bounds over the years. The development of biomimetic chemistry then continued in designing the molecules that can function like enzymes. And now, with the advent of nanotechnology, nanostructured materials have been shown to exhibit enzyme-like activities (nanozymes). Interestingly, the two distinct fields, biology and materials science, have been integrated to form an entirely new area of research that has captured a great attention. Along with the pronounced application of nanomaterials as drug delivery vehicles, anticancer agents, antimicrobials, etc., research is also focused on designing nanomaterials for the biomimetic applications. The thesis consists of five chapters. The first chapter provides a general overview of the recently discovered nanozymes that mimic heme-peroxidase, oxidase, superoxide dismutase, catalase, haloperoxidase and phosphatase. This chapter also deals with the nanozymes’ application in sensing and immunoassay, and as antioxidants, neuroprotective agents. The factors affecting the nanozymes’ activity and the challenges associated with them is also covered in this chapter. Chapter 2 is divided into two parts and it deals with the biomimetic properties of graphene-based materials. In part A, the remarkable peroxynitrite (PN) reductase and isomerase activities of hemin-functionalized reduced graphene oxide (rGO) is discussed. In part B, the activity of graphene oxide (GO) as peroxide substrate for the glutathione peroxidase (GPx) enzyme is discussed. In chapter 3, the oxidant material, V2O5, is shown to exhibit significant GPx-like antioxidant activity in its nano-form. Chapter 4 deals with the oxidase-like activity of MnFe2O4 nanooctahedrons for the antibody-free detection of major oxidative stress biomarker, carbonylated proteins. In chapter 5, the phosphotriesterase mimetic role of vacancy engineered nanoceria is discussed. instead of H2O2 for glutathione peroxidase (GPx) enzyme. As partial reduction of GO was observed when treated with GPx enzyme due to the fact that large sheet-like structures cannot be accessible to the active site, we studied the reaction with some GPx mimetics (Fig. 2). Varying the concentration of cofactor glutathione (GSH) required for the reaction, GPx mimic, ditelluride, could accomplish the reduction of GO following Michaelis-Menten kinetics. As the structure of GO is elusive and under active investigation, our study highlights the presence of peroxide linkages as integral part of GO other than hydroxyl, epoxy and carboxylic groups. This study also highlights an important fact that the modification of GO by biologically relevant compounds such as redox proteins must be taken into account when using GO for biomedical applications because such modifications can alter the fundamental properties of GO. Figure 2. The GO reductase and decarboxylase activities of GPx mimetic ditelluride compound, suggesting the presence of peroxide linkages on GO. In chapter 3, we have discussed about the novel antioxidant nanozyme that combats oxidative stress. During our attempts in the investigation of antioxidant nanozymes, we surprisingly noticed that the oxidant material, V2O5, shows significant GPx-like antioxidant activity in its nano-form. The Vn readily internalize in the cells and exhibit remarkable protective effects when challenged against reactive oxygen species (ROS). Although Vn has been shown to protect cells from ROS-induced damage, cells treated with bulk V2O5 and few vanadium complexes resulted in generation of ROS and severe toxicity. Detailed investigation on the mechanism of this interesting phenomenon Chapter 4 deals with the development of novel methodology for detection of biomarkers. Inspired by the use of antibodies and enzymes for detection of a specific antigen, we have shown for the first time that the nanozymes can entirely replace antibodies and enzymes in Enzyme-linked Immunosorbent Assays (ELISA). As a specific example, we focused on the antibody-free detection of chief oxidative stress biomarker, carbonylated proteins, as our target. To achieve this, we designed MnFe2O4 nanooctahedrons that can function as oxidase enzyme and form signaling point of detection. We functionalized MnFe2O4 nanooctahedrons with hydrazide terminating groups so that carbonylated proteins can be linked to nanozymes by hydrazone linkage (Fig. 4a). Treatment of various carbonylated proteins (hemoglobin (Hb), Myoglobin (Mb), Cytochrome c (Cyt c), RNase and BSA) coated in well plate with hydrazide-terminated MnFe2O4 nanooctahedrons and then with 3,3’,5,5’-tetramethylbenzidine substrate, resulted in instantaneous detection by well plate reader (Fig. 4b). Considering the challenges and difficulties associated with the conventional methods used to detect such modified proteins, this methodology opens up a new avenue for the simple, cost-effective, instantaneous and entirely antibody-free ELISA-type detection of carbonylated proteins. Our results provide a cumulative application of nanozymes’ technology in oxidative stress associated areas and pave a new way for direct early detection of post translational modification (PTM) related diseases. Figure 4. a) Nanozyme linked to the carbonylated protein coated on a plate through hydrazone linkage. b) General bar diagram showing detection of oxidized (carbonylated) proteins by nanozymes. Synopsis Figure 5. a) A cartoon view of surface of ceria showing vacancy. b) Zoomed portion of high resolution transmission electron microscopic image showing few vacancies on the surface of nanoceria. c) Catalytic mechanism of detoxification of paraoxon at the defect site. In the final chapter, chapter 5, we have discussed about the nanomaterial that can function as phosphotriesterase enzyme. Phosphotriesterase enzyme is a bacterial enzyme that is involved in the rapid hydrolysis of sarin gas-related deadly nerve agents such as paraoxon, parathion and malathion. When encountered with these orgnaophospatetriesters, living beings tend to undergo nerve shock to cause paralysis by inhibiting an extremely important enzyme called acetylcholine esterase. They are also known to cause severe oxidative stress problems and are associated with neurodegenerative disorders. Therefore, curbing the toxic effects and detoxification of these nerve agents is a world-wide concern and many research teams have focused their attention to address this important problem. Working on the development of nanozymes for important problems, we found that nanoceria, especially the vacancy engineered one (Fig. 5a,b), can serve as active mimic of phosphotriesterase enzyme in the presence of N-methylmorpholine (acting as a distal base histidine). Vacancy engineered nanoceria has been shown to catalyze the hydrolysis of high amounts of paraoxon quiet efficiently and within few minutes with very low activation energy and high kcat. Detailed mechanistic investigation revealed that the presence of both Ce(III) and Ce(IV) is very essential for detoxification activity (Fig. 5b). The vacancies on the surface of nanoceria, were the buried Ce(III) ions are directly exposed to the reaction environment, behave as hotspots or enzyme active sites for detoxification reaction (Fig. 5b).
38

A two-dimensional conjugated polymer framework with fully sp2-bonded carbon skeleton

Feng, Xinliang, Zhuang, Xiaodong, Zhao, Wuxue, Zhang, Fan, Cao, Yu, Liu, Feng, Bia, Shuai 21 July 2017 (has links) (PDF)
The synthesis of crystalline two-dimensional (2D) covalent organic frameworks (COFs) with fully unsaturated carbon–carbon backbones via a solution approach remains a great challenge. In this work, we report the first example of an olefin-linked 2D conjugated COF using a Knoevenagel polycondensation reaction of 1,4-phenylene diacetonitrile and three armed aromatic aldehyde. The resulting 2D poly(phenelyenevinylene) framework (2DPPV) possesses a sheet morphology, and a crystalline layered structure featuring a fully sp2-bonded carbon skeleton with pendant cyanide groups. Its unique alternating structure with a serrated configuration has been essentially evaluated using HR-TEM TEM analysis, nitrogen physisorption measurements, PXRD studies and theoretical simulations. Upon thermal and activation treatments, the as-prepared 2DPPV can be facilely converted into porous carbon nanosheets with large specific surface areas of up to 880 m2 g−1 which exhibit an excellent electrochemical performance as supercapacitor electrodes and electrocatalysts for the oxygen reduction reaction. This represents an economic non-template approach to 2D porous carbon materials for energy-related applications.
39

Facile template-free synthesis of vertically aligned polypyrrole nanosheets on nickel foams for flexible all-solid-state asymmetric supercapacitors

Yang, Xiangwen, Lin, Zhixing, Zheng, Jingxu, Huang, Yingjuan, Chen, Bin, Mai , Yiyong, Feng, Xinliang 17 July 2017 (has links) (PDF)
This paper reports a novel and remarkably facile approach towards vertically aligned nanosheets on three-dimensional (3D) Ni foams. Conducting polypyrrole (PPy) sheets were grown on Ni foam through the volatilization of the environmentally friendly solvent from an ethanol–water solution of pyrrole (Py), followed by the polymerization of the coated Py in ammonium persulfate (APS) solution. The PPy-decorated Ni foams and commercial activated carbon (AC) modified Ni foams were employed as the two electrodes for the assembly of flexible all-solid-state asymmetric supercapacitors. The sheet-like structure of PPy and the macroporous feature of the Ni foam, which render large electrode–electrolyte interfaces, resulted in good capacitive performance of the supercapacitors. Moreover, a high energy density of ca. 14 Wh kg−1 and a high power density of 6.2 kW kg−1 were achieved for the all-solid-state asymmetric supercapacitors due to the wide cell voltage window.
40

A two-dimensional conjugated polymer framework with fully sp2-bonded carbon skeleton

Feng, Xinliang, Zhuang, Xiaodong, Zhao, Wuxue, Zhang, Fan, Cao, Yu, Liu, Feng, Bia, Shuai 21 July 2017 (has links)
The synthesis of crystalline two-dimensional (2D) covalent organic frameworks (COFs) with fully unsaturated carbon–carbon backbones via a solution approach remains a great challenge. In this work, we report the first example of an olefin-linked 2D conjugated COF using a Knoevenagel polycondensation reaction of 1,4-phenylene diacetonitrile and three armed aromatic aldehyde. The resulting 2D poly(phenelyenevinylene) framework (2DPPV) possesses a sheet morphology, and a crystalline layered structure featuring a fully sp2-bonded carbon skeleton with pendant cyanide groups. Its unique alternating structure with a serrated configuration has been essentially evaluated using HR-TEM TEM analysis, nitrogen physisorption measurements, PXRD studies and theoretical simulations. Upon thermal and activation treatments, the as-prepared 2DPPV can be facilely converted into porous carbon nanosheets with large specific surface areas of up to 880 m2 g−1 which exhibit an excellent electrochemical performance as supercapacitor electrodes and electrocatalysts for the oxygen reduction reaction. This represents an economic non-template approach to 2D porous carbon materials for energy-related applications.

Page generated in 0.0623 seconds