Spelling suggestions: "subject:"nanoshells"" "subject:"nanosheet""
1 |
Light-Triggered Release of DNA from Plasmon-Resonant NanoparticlesHuschka, Ryan 05 June 2013 (has links)
Plasmon-resonant nanoparticle complexes show promising potential for light-triggered, controllable delivery of deoxyribonucleic acids (DNA) for research and therapeutic purposes. For example, the approach of RNA interference (RNAi) ‒ using antisense DNA or RNA oligonucleotides to silence activity of a specific pathogenic gene transcript and reduce expression of the encoded protein ‒ is very useful in dissecting genetic function and holds promise as a molecular therapeutic. Herein, we investigate the mechanism and probe the in vitro therapeutic potential of DNA light-triggered release from plasmonic nanoparticles.
First, we investigate the mechanism of light-triggered release by dehybridizing double-stranded (dsDNA) via laser illumination from two types of nanoparticle substrates: gold (Au) nanoshells and Au nanorods. Both light-triggered and thermally induced releases are distinctly observable from nanoshell-based complexes. Surprisingly, no analogous measurable light-triggered release was observable from nanorod-based complexes below the DNA melting temperature. These results suggest that a nonthermal mechanism may play a role in light-triggered DNA release.
Second, we demonstrate the in vitro light-triggered release of molecules non-covalently attached within dsDNA bound to the Au nanoshell surface. DAPI (4',6-diamidino-2-phenylindole), a bright blue fluorescent molecule that binds reversibly to double-stranded DNA, was chosen to visualize this intracellular light-induced release process. Illumination through the cell membrane of the nanoshell-dsDNA-DAPI complexes dehybridizes the DNA and releases the DAPI molecules within living cells. The DAPI molecules diffuse to the nucleus and associate with the cell’s endogenous DNA. This work could have future applications towards drug delivery of molecules that associate with dsDNA.
Finally, we demonstrate an engineered Au nanoshell (AuNS)-based therapeutic oligonucleotide delivery vehicle, designed to release its cargo on demand upon illumination with a near-infrared (NIR) laser. A poly(L)lysine peptide (PLL) epilayer coated onto the AuNS surface (AuNS-PLL) is used to capture intact, single-stranded antisense DNA oligonucleotide, or alternatively, double-stranded short-interfering RNA (siRNA) molecules. A green fluorescent protein (GFP)-expressing human lung cancer H1299 cell line was used to determine cellular uptake and GFP gene silencing mediated by AuNS-PLL delivery vector. The light-triggered release of oligonucleotides could have broad applications in the study of cellular processes and in the development of intracellular targeted therapies.
|
2 |
Investigation of gold nanoparticle accumulation kinetics for effective cancer targetingPark, Jaesook 09 November 2010 (has links)
Gold nanoparticles (GNP) have been widely used as optical imaging and photothermal therapy agents due to their biocompatibility, simplicity of conjugation chemistry, optical tunability and efficient light conversion to heat. A number of in vitro and in vivo studies have demonstrated that they can be used as effective thermal therapy and imaging contrast agents to treat and diagnose cancer. As clinical applications of GNPs for cancer imaging and therapy have gained interest, efforts for understanding their accumulation kinetics has become more important. Given the recent demonstration of intrinsic two-photon induced photoluminescence (TPIP) of gold nanoshells (GNSs) and gold nanorods (GNRs), TPIP imaging is an efficient tool for investigating the microscopic distribution of the GNPs at intra-organ level.
The following work explores these GNPs’ physical and optical properties for effective use of GNPs in TPIP imaging and examines the feasibility of using intrinsic TPIP imaging to investigate GNP’s biodistribution in bulk tumors and thin tissue slices processed for standard histology. Our results showed that GNPs yield a strong TPIP signal, and we found that the direct luminescence-based contrast imaging of GNPs can image both GNPs and nuclei, cytoplasm or vasculature simultaneously.
Also, we present the effect of GNP morphology on their distribution within organs. Collected images showed that GNPs had a heterogeneous distribution with higher accumulation at the tumor periphery. However, GNRs had deeper penetration into tumor than GNRs due to their shape and size. In addition, GNPs were observed in unique patterns close to vasculature.
Finally, we introduce single- and multiple-dose administrations of GNPs as a way of increasing GNP accumulation in tumor. Our results show that multiple dosing can increase GNP accumulation in tumor 1.6 to 2 times more than single dosing. Histological analysis also demonstrated that there were no signs of acute toxicity in tumor, liver and spleen excised from the mice receiving 1 injection, 5 injections of GNPs and trehalose injection. / text
|
3 |
Plasmonic Nanostructures for Solar and Biological ApplicationNeumann, Oara 16 September 2013 (has links)
The electromagnetic absorption properties of plasmonic nanostructures were utilized to develop mesoscopic sites for highly efficient photothermal generation steam, SERS biosensing, and light-triggered cellular delivery uptake. Plasmonic nanostructures embedded in common thermal solutions produces vapor without the requirement of heating the fluid volume. When particles are dispersed in water at ambient temperature, energy is directed primarily to vaporization of water into steam, with a much smaller fraction resulting in heating of the fluid. Solar illuminated aqueous nanoparticle solution can drive water-ethanol distillation, yielding fractions significantly richer in ethanol content than simple thermal distillation and also produced saturated steam destroying Geobacillus stearothermophilus bacteria in a compact solar powered autoclave.
Subwavelength biosensing sites were developed using the plasmonic properties of gold nanoshells to investigate the properties of aptamer (DNA) target complexes. Nanoshells are tunable core-shell nanoparticles whose resonant absorption and scattering properties are dependent on core/shell thickness ratio. Nanoshells were used to develop a label free detection method using SERS to monitor conformational change induced by aptamer target binding. The conformational changes to the aptamers induced by target binding were probed by monitoring the aptamer SERS spectra reproducibility.
Furthermore, nanoshells can serve as a nonviral light-controlled delivery vector for the precise temporal and spatial control of molecular delivery in vitro. The drug delivery concept using plasmonic vectors was shown using a monolayer of ds-DNA attached to the nanoshell surface and the small molecular “parcel” intercalated inside ds-DNA loops. DAPI, a fluorescent dye, was used as the molecular parcel to visualize the release process in living cells. Upon laser illumination at the absorption resonance the nanoshell converts photon energy into heat producing a local temperature gradient that induces DNA dehybridization, releasing the intercalated molecules.
|
4 |
Assembly of colloidal nanocrystals into phospholipid structures and photothermal materialsRasch, Michael 12 November 2013 (has links)
There has been growing interest in developing colloidal metal and semiconductor nanocrystals as biomedical imaging contrast agents and therapeutics, since light excitation can cause the nanocrystals to fluoresce or heat up. Recent advances in synthetic chemistry produced fluorescent 2-4 nm diameter silicon and 1-2 nm diaemeter CuInSSe nanocrystals, as well as 16 nm diameter copper selenide (Cu₂₋[subscript x]Se) nanocrystals exhibiting strong absorbance of near infrared light suitable for biomedical applications. However, the syntheses yield nanocrystals that are stabilized by an adsorbed layer of hydrocarbons, making the nanocrystals hydrophobic and non-dispersible in aqueous solution. Encapsulating these nanocrystals in amphiphilic polymer micelles enables the nanocrystals to disperse in water. Subsequently, the Si nanocrystals were injected into tissue to demonstrate fluorescence imaging, the photothermal transduction efficiency of copper selenide nanocrystals was characterized in water, and the copper selenide nanocrystals were used enhance the photothermal destruction of cancer cells in vitro. The polymer-encapsulated copper selenide nanocrystals were found to have higher photothermal transduction efficiency than 140 nm diameter Au nanoshells, which have been widely investigated for photothermal therapy. Combining the optical properties of metal and semiconductor nanocrystals with the drug-carrying capability of lipid vesicles has received attention lately since it may create a nanomaterial capable of performing simultaneous drug delivery, optical contrast enhancement, and photo-induced therapy. Hydrophobic, dodecanethiol-coated Au nanocrystals were dispersed in water with phosphatidylcholine lipids and characterized using cryo transmission electron microscopy. 1.8 nm diameter Au nanocrystals completely load the bilayer of unsaturated lipid vesicles when the vesicles contain residual chloroform, and without chloroform the nanocrystals do not incorporate into the vesicle bilayer. 1.8 nm Au nanocrystals dispersed in water with saturated lipids to form lipid-coated nanocrystal agglomerates, which sometimes adhered to vesicles, and the shape of the agglomerates varied from linear nanocrystal chains, to flat sheets, to spherical clusters as the lipid fatty acid length was increased from 12 to 18 carbons. Including squalene formed lipid-stabilized emulsion droplets which were fully loaded with the Au nanocrystals. Results with 4.1 nm Au and 2-3 nm diameter Si nanocrystals were similar, but these nanocrystals could not completely load the bilayers of unsaturated lipids. / text
|
5 |
Synthesis and optical properties of plasmonic fluorescent quantum dots / Synthèse et propriétés optiques de quantum dots fluorescents plasmoniquesJi, Botao 11 July 2014 (has links)
Grâce aux plasmons de surface des nanoparticules métalliques et aux propriétés optiques et électroniques des quantum dots (QDs), les nanostructures QD/métal suscitent beaucoup d'intérêt. Cependant, bien que prometteurs, les hybrides QD/or colloïdaux n'ont été que rarement obtenus.Nous avons mis au point la première méthode de synthèse généralisée conduisant à des structures hybrides cœur/coque/coque QD/SiO2/Au (appelées QDs dorés). Tout d'abord, les QDs hydrophobes sont encapsulés individuellement dans des billes de silice par émulsion inverse. Les nanoparticules obtenues sont ensuite recouvertes d'une coque d'or continue via un processus de dépôt en solution. Les épaisseurs de silice et d'or peuvent être ajustées indépendamment aux dimensions voulues. Nous avons montré que les QDs dorés individuels à base de QDs CdSe/CdS à coque épaisse possèdent une émission stable et poissonienne à température ambiante et sont très photostables. Cette nouvelle structure se comporte comme un résonateur plasmonique avec un facteur de Purcell élevé (~6), en très bon accord avec les simulations.Nous présentons également des auto-assemblages de QDs hydrophobes en superparticules (SPs). Un choix judicieux de QDs donne aux SPs des propriétés exceptionnelles telles qu'une émission de fluorescence intense, non-clignotante et multicolore. Des SPs multifonctionnelles peuvent aussi être obtenues en associant des nanocristaux magnétiques et fluorescents. La croissance d'une coque de silice sur les SPs a permis d'augmenter leur stabilité et nous avons démontré que cette couche de silice pouvait être recouverte d'une coque d'or pour améliorer la photostabilité et la biocompatibilité de ces SPs. / Due to the surface plasmons in metallic nanostructures and the exceptional optical and electrical properties of colloidal semiconductor quantum dots (QDs), QD/metal hybrid nanostructures attract much attention. However, although these structures are very promising, colloidal single QD/gold hybrids have rarely been synthesized.We managed to develop for the first time a generalized synthetic route to synthesize a QD/SiO2/Au core/shell/shell hybrid structure (golden QDs). First, hydrophobic QDs are individually encapsulated in silica beads via reverse microemulsion. The obtained QD/SiO2 nanoparticles are then coated with a continuous gold nanoshell using a solution deposition process. The thicknesses of the silica and the gold layers can be tailored independently to various dimensions. We showed that single golden thick-shell CdSe/CdS QDs provide a system with a stable and poissonian emission at room temperature and a high photostability. This novel hybrid golden QD structure behaves as a plasmonic resonator with a strong (~ 6) Purcell factor, in very good agreement with simulations. We also present the self-assembly of hydrophobic QDs into colloidal superparticles (SPs). With a fine choice of QDs, SPs could indeed possess outstanding properties including non-blinking fluorescence, high fluorescence intensity and multi-color emission. Multi-functional SPs could also be obtained by mixing fluorescent or magnetic nanocrystals. The subsequent growth of a silica shell on the SPs allowed an enhancement of their stability and we demonstrated this silica shell could itself be covered by a gold nanoshell to further improve the SPs photostability and biocompatibility.
|
Page generated in 0.0513 seconds