• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 106
  • 29
  • 13
  • 9
  • 6
  • 5
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 270
  • 270
  • 142
  • 85
  • 63
  • 53
  • 26
  • 23
  • 21
  • 19
  • 19
  • 17
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Precursor-Directed Biosynthesis of Novel Jadomycins and Expansion of the Jadomycin Library

Dupuis, Stephanie 13 August 2010 (has links)
Jadomycins are secondary metabolites produced by Streptomyces venezuelae ISP5230 VS1099 in response to conditions of stress such as heat or ethanol shock. They have been shown to exhibit antibiotic and anticancer activity. Unique structural features of the jadomycins include a rare 2,6-dideoxysugar, L-digitoxose, and an oxazolone ring with an amino acid component. Previous studies have revealed that jadomycin derivatives can be produced by altering the amino acid in S. venezuelae ISP5230 VS1099 culture media which becomes incorporated into the oxazolone ring. One jadomycin from a proteogenic amino acid and three new jadomycins from non-proteogenic amino acids have been successfully produced on a large scale (4 mg/L to 12 mg/L, 2 L) and characterized using mass spectrometry, infrared spectroscopy, UV-visible spectroscopy, and nuclear magnetic resonance spectroscopy. One of these contains a terminal alkyne functionality and has been used in cycloaddition reactions with various azides to produce a library of triazole-containing jadomycins.
62

Synthetic Approaches to the Bicyclic Core of TEO3.1, Hamigerone and Embellistatin

Lundy, Sarah Diane January 2007 (has links)
This thesis describes synthetic studies directed towards the total synthesis of the natural products TEO3.1, hamigerone and embellistatin. Chapter One provides an overview, which details the role of antifungal natural products in the pharmaceutical and agrochemical industries, and describes the association between total synthesis and natural products. Three structurally related natural products TEO3.1, hamigerone and embellistatin are introduced as synthetic targets and a strategy for their synthesis is proposed involving an intramolecular Diels-Alder (IMDA) reaction, followed by addition-elimination chemistry. Investigations into the application of the IMDA reaction to the synthesis of the bicyclic core are described in Chapter Two. A Julia olefination reaction was used to install the diene moiety and allowed for the successful synthesis of a model triene precursor. The IMDA cyclisation of the triene was shown to proceed with high endo-selectivity. However, efforts to generate the diene-containing bicyclic core failed and, as a result, this approach to the natural products was abandoned. Chapter Three introduces the diene-regenerative Diels-Alder reaction as an alternative strategy for the direct installation of the diene moiety. The preparation of a model system is described, which established methodology for the efficient preparation of the pyrone-containing Diels-Alder substrate. Cyclisation of this material via a [4 + 2] cycloaddition reaction, followed by extrusion of carbon dioxide, proved a viable method for generating the desired cyclohexadiene system. In Chapter Four, the previously established methodology is applied to the synthesis of the fully functionalised bicyclic core of TEO3.1, hamigerone and embellistatin. The preparation of the racemic Diels-Alder substrate and its successful cyclisation to the bicyclic core is described. An investigation into the preparation of chiral material is also discussed, as well as the description of a model study for the installation of the various side-chains of the natural products. The chapter concludes with a brief discussion of the future studies required to complete the total synthesis of the TEO3.1, hamigerone and embellistatin.
63

Part I: The Development of the Organocatalytic Asymmetric Mannich and Sulfenylation Reactions Part II: Progress Towards the Synthesis of Lagunamide A

Kohler, Mark Christopher January 2012 (has links)
<p>This dissertation deals with the development of asymmetric carbon-carbon and carbon-heteroatom bond-forming reactions and the synthesis of Lagunamide A. Asymmetric C-C and C-X bond formations are critical transformations in synthetic chemistry. While a variety of approaches are available to effect such reactions, organocatalytic methods have attracted considerable recent attention. Common themes have emerged from these studies with regard to both the mode of asymmetric catalysis and the nature of the substrates they are applied to. We have been investigating alternatives to these themes for both carbon-carbon and carbon-heteroatom bond formation. We will describe some of our efforts to expand the parameters of asymmetric organocatalysis, which include the development a novel biomimetic proximity-assisted soft enolization approach to the asymmetric Mannich reaction, as well as the use of nitrosoalkenes for the asymmetric a-sulfenylation of ketones and aldehydes. Lagunamide A was recently isolated from Palau Hantu Besar, Singapore and has shown strong antimalarial activity and cytotoxicity against leukemia. The work presented describes the progress towards the first asymmetric total synthesis of this natural product.</p> / Dissertation
64

Synthesis of the spiroketal moiety of didemnaketal A

Davy, Jason Alan 12 December 2014 (has links)
The ascidian isolation artifact didemnaketal A is a highly oxygenated polyisoprenoid capable of inhibiting HIV-1 protease through an unusual dissociative mechanism. However, recent synthetic efforts have cast doubt on stereochemical assignments in the originally published structure. In the interest of elucidating the true structure of didemnaketal A through total synthesis, we present a strategy for rapidly accessing the putative spiroketal fragment by exploiting its latent symmetry. In a single step, double Sharpless asymmetric dihydroxylation reactions (SAD) allowed us to simultaneously set all seven stereogenic centers and assemble this complex fragment from non-chiral material. The precursor was obtainable through a racemic synthesis in which the geometric isomers of a nine-membered cyclic enone converged in a ring-opening cross metathesis reaction (ROCM). / Graduate / 0490 / jdavy@uvic.ca
65

Nitroacrylates : versatile reagents in organic synthesis

Orton, Darren January 2001 (has links)
Nitroacrylates are stable, crystalline solids and have frequently been used in synthesis as reactive dienophiles in the Diels-Alder reaction. The regio- and diastereoselectivity of the Diels-Alder reaction is controlled by the electronic properties of the nitro group. This thesis describes work to utilise the nitro group to provide control of stereochemistry in the synthesis of natural products. The thesis begins by discussing the synthesis of nitroacrylates using both a nitro-aldol and radical based route. An investigation into their selectivity in the Diels-Alder reaction with a diverse array of dienes is discussed. As part of this investigation a large increase in diastereoselectivity was observed for the reaction of ethyl β-nitroacrylate and 1-methoxycyclohexa-1,4-diene when Lewis acids were added. The origin of this selectivity is unknown and similar dienes show only a modest increase in selectivity on addition of ZnCl(_2).An application of the resultant adducts has been demonstrated in the synthesis of a simple bicyclic P-amino acid and then subsequendy applied to the diastereoselective synthesis of chorismate-based P-amino acids (25*, 3S*)-DHAA and the antibiotic oryzoxymycin. The key steps involve a base-mediated ring-opening reaction of the 7-oxa-bicyclo[2,2,l]hept-5-ene and a CsF mediated coupling of the lactate moiety. The progress toward the synthesis of a related anthranilate synthase inhibitor is also discussed. Finally, in the context of a synthesis of the structurally unique diterpene Vinigrol 1 we have shown that nitroacrylates can be employed as substituted ketene equivalents in the formation of cyclic alpha-chiral ketones.
66

Transition Metal Catalysis: Construction of Chiral Lactones, Ketones, Sulfoxides and 6-deoxyerythronolide B

Dornan, Peter 07 August 2013 (has links)
The products of organic synthesis affect countless aspects of our everyday lives, from our medicines to our fuels, plastics and more. The discovery of new methods for organic synthesis is of paramount importance if we are to find greener and more efficient ways to synthesize commodity and fine chemicals, and lower the impact of the chemical industry on our environment. The aim of my doctoral thesis is to discover fundamentally new enantioselective transformations using transition metal catalysis, which can be applied to the synthesis of pharmaceutical agents, natural products or other fine chemicals. Hydroacylation is the atom economical addition of an aldehyde C–H bond across an unsaturated functional group such as an olefin or ketone. Theoretical studies on an intramolecular ketone hydroacylation catalyzed by rhodium were performed. The insights gained from this mechanistic study were then applied to the development of an asymmetric olefin hydroacylation using ethers, sulfides and sulfoxides as directing groups. Motivated by a desire to discover new catalysts with high activity and selectivity in rhodium catalyzed transformations, a chiral tridentate sulfoxide ligand was designed and synthesized. This ligand was found to be highly enantioselective in rhodium catalyzed 1,4-addition reactions. The use of allylic sulfoxides in a dynamic kinetic resolution was then investigated. The sulfoxide was found to direct a rhodium catalyzed olefin hydrogenation with simultaneous substrate racemization through a rhodium π-allyl pathway. Progress was made towards the total synthesis of a complex polyketide natural product, 6-deoxyerythronolide B. The key macrocyclization step was achieved in a model system by ring closing metathesis, and future work will be directed at completing the synthesis of the natural product.
67

Transition Metal Catalysis: Construction of Chiral Lactones, Ketones, Sulfoxides and 6-deoxyerythronolide B

Dornan, Peter 07 August 2013 (has links)
The products of organic synthesis affect countless aspects of our everyday lives, from our medicines to our fuels, plastics and more. The discovery of new methods for organic synthesis is of paramount importance if we are to find greener and more efficient ways to synthesize commodity and fine chemicals, and lower the impact of the chemical industry on our environment. The aim of my doctoral thesis is to discover fundamentally new enantioselective transformations using transition metal catalysis, which can be applied to the synthesis of pharmaceutical agents, natural products or other fine chemicals. Hydroacylation is the atom economical addition of an aldehyde C–H bond across an unsaturated functional group such as an olefin or ketone. Theoretical studies on an intramolecular ketone hydroacylation catalyzed by rhodium were performed. The insights gained from this mechanistic study were then applied to the development of an asymmetric olefin hydroacylation using ethers, sulfides and sulfoxides as directing groups. Motivated by a desire to discover new catalysts with high activity and selectivity in rhodium catalyzed transformations, a chiral tridentate sulfoxide ligand was designed and synthesized. This ligand was found to be highly enantioselective in rhodium catalyzed 1,4-addition reactions. The use of allylic sulfoxides in a dynamic kinetic resolution was then investigated. The sulfoxide was found to direct a rhodium catalyzed olefin hydrogenation with simultaneous substrate racemization through a rhodium π-allyl pathway. Progress was made towards the total synthesis of a complex polyketide natural product, 6-deoxyerythronolide B. The key macrocyclization step was achieved in a model system by ring closing metathesis, and future work will be directed at completing the synthesis of the natural product.
68

Characterizing the Macrocyclization Activity of Fungal Polyketide Synthase Thioesterases

Wirz, Monica Hélène 12 January 2012 (has links)
Fungal polyketides are a diverse class of natural products that possess many pharmacological properties, including anticancer properties. These properties are evident in the resorcylic acid lactones, a family of polyketides, including zearalenone and radicicol, which shows potent inhibition of tumour cell growth. The key step in the biosynthesis of these lactones is macrocyclization of a linear carboxylic acid into the macrolactone. This reaction is catalyzed by a polyketide synthase (PKS) thioesterase enzyme. Bacterial PKS thioesterases (TEs) have been extensively studied and their substrate specificity has been characterized in vitro. They are highly substrate selective for the macrocyclization reaction. Since Fungal PKS TEs show little sequence homology to bacterial TEs, we have begun investigating their substrate specificity. In particular we are examining the ability of fungal TEs to macrocyclize compounds with varying ring sizes, stereogenic configuration, and nucleophiles. Herein we present the synthesis of a number of diverse TE substrates and the in vitro macrocyclization results for the TEs from zearalenone and radicicol biosynthetic pathway with these substrates.
69

Part A: Palladium-Catalyzed C–H Bond Functionalization Part B: Studies Toward the Synthesis of Ginkgolide C using Gold(I) Catalysis

Lapointe, David 26 January 2012 (has links)
The field of metal-catalyzed C–H bond functionalizations is an incredibly vibrant and spans beyond the formations of biaryl motifs. The introduction chapter will cover the mechanistic aspects of the C–H bond functionalization with metal-carboxylate complexes. The mechanistic facets of this reaction will be the main conducting line between the different sections and chapters of the first part of this thesis. In the second chapter, will be described additives that can readily promoted C–H bond arylation of poorly reactive substrates. More specifically, we will revisit the intramolecular direct arylation reaction we will demonstrate the effect of pivalic acid as a co-catalyst by developing milder reaction conditions. In the third chapter we be described experimental and computational studies which suggested that the a single pathway might be involved in the palladium-catalyzed C–H bond functionalization of a wide range of (hetero)arene. Following this we will describe a general set of conditions for the direct arylation of wide range of heteroarenes. Also, we will present two different strategies to selectively and predictably arylate substrates containing multiple functionalizable C–H bonds. In the fourth chapter will be presented our efforts toward the development of new C–H bond functionalization methods in which we could apply our knowledge on the C–H bond cleavage and apply it to the formation of new scaffolds. The development of two new palladium-catalyzed methods were also described. In the fifth chapter, our effort toward the development of ligands to specifically promoted C–H bond cleavage will be presented. In the sixth chapter will be presented the latest results on the study of the mechanism of the C–H bond cleavage combining experimental and computational studies. In part B of this thesis will be presented our strategy toward the total synthesis of ginkgolide C that included two gold(I)-catalyzed reactions as key steps in the preparation of the spiro[4.4]nonane core of this natural product. The first studies on the feasibility of the key steps of the synthesis will be described.
70

Synthetic Approaches to the Bicyclic Core of TEO3.1, Hamigerone and Embellistatin

Lundy, Sarah Diane January 2007 (has links)
This thesis describes synthetic studies directed towards the total synthesis of the natural products TEO3.1, hamigerone and embellistatin. Chapter One provides an overview, which details the role of antifungal natural products in the pharmaceutical and agrochemical industries, and describes the association between total synthesis and natural products. Three structurally related natural products TEO3.1, hamigerone and embellistatin are introduced as synthetic targets and a strategy for their synthesis is proposed involving an intramolecular Diels-Alder (IMDA) reaction, followed by addition-elimination chemistry. Investigations into the application of the IMDA reaction to the synthesis of the bicyclic core are described in Chapter Two. A Julia olefination reaction was used to install the diene moiety and allowed for the successful synthesis of a model triene precursor. The IMDA cyclisation of the triene was shown to proceed with high endo-selectivity. However, efforts to generate the diene-containing bicyclic core failed and, as a result, this approach to the natural products was abandoned. Chapter Three introduces the diene-regenerative Diels-Alder reaction as an alternative strategy for the direct installation of the diene moiety. The preparation of a model system is described, which established methodology for the efficient preparation of the pyrone-containing Diels-Alder substrate. Cyclisation of this material via a [4 + 2] cycloaddition reaction, followed by extrusion of carbon dioxide, proved a viable method for generating the desired cyclohexadiene system. In Chapter Four, the previously established methodology is applied to the synthesis of the fully functionalised bicyclic core of TEO3.1, hamigerone and embellistatin. The preparation of the racemic Diels-Alder substrate and its successful cyclisation to the bicyclic core is described. An investigation into the preparation of chiral material is also discussed, as well as the description of a model study for the installation of the various side-chains of the natural products. The chapter concludes with a brief discussion of the future studies required to complete the total synthesis of the TEO3.1, hamigerone and embellistatin.

Page generated in 0.079 seconds