Spelling suggestions: "subject:"nehomogenní"" "subject:"nehomogenity""
1 |
Nehomogeninės šilumos laidumo lygties sprendimas / The solution of non-homogeneous heat conduction equationJanutytė, Modesta 30 July 2013 (has links)
Bakalauro darbe nagrinėjama nehomogeninė šilumos laidumo lygtis. Darbo tikslas rasti lygties bendruosius sprendinius, kurie tenkintų duotąją pradinę ir kraštines sąlygas. Ieškant sprendinių mišrusis uždavinys nehomogeninei lygčiai su nehomogenine pradine sąlyga suvestas į du mišriuosius uždavinius - homogeninei lygčiai su nehomogenine pradine sąlyga ir nehomogeninei lygčiai su homogenine pradine sąlyga. Remdamiesi gautais šių uždavinių sprendiniais, gavome mišriojo uždavinio nehomogeninei šilumos laidumo lygčiai sprendinius. / There was analyzed non-homogeneous heat conduction equation in the bachelor work. This work objective is to find equation general solutions, which have to fulfill of the given initial and boundaries conditions. The mixed problem to non-homogeneous equation with non-homogeneous initial was piece together in two mixed problems – to homogeneous equation with non-homogeneous initial and to non-homogeneous equation with homogeneous initial when we were searching solutions. Based on the obtained these solutions, we got solutions of the mixed problem to non-homogeneous heat conduction equation.
|
2 |
Kai kurie paprastųjų diferencialinių lygčių su ypatingais koeficientais kraštiniai uždaviniai / Some boundary value problems for the ordinary differential equations with special coefficientsAldošina, Kristina 21 June 2005 (has links)
The paper deals with the second-order linear non-homogeneity differential equation with singular coefficients at zero as the equation order degeneration point. With this ground the boundary value problem is defined, investigated and solved in the class of bounded functions. The solution existence and uniqueness theorem is proved.
|
3 |
Nonhomogeneous boundary value problem for the stationary Navier-Stokes system in domains with noncompact boundaries / Stacionari Navjė-Stokso sistema su nehomogenine kraštine sąlyga srityse su nekompaktiškais kraštaisKaulakytė, Kristina 24 January 2013 (has links)
In the thesis there is studied nonhomogenous boundary value problem for the stationary Navier-Stokes system in domains which may have two types of outlets to infinity: paraboloidal and layer type. The boundary is multiply connected. It consists of connected noncompact components, forming the outer boundary, and connected compact components, forming the inner boundary. We suppose that the fluxes over the components of the inner boundary are sufficiently small, while we do not impose any restrictions on fluxes over the infinite components of the outer boundary. We prove that the formulated problem admits at least one weak solution which, depending on the geometry of the domain, may have either finite or infinite Dirichlet integral. / Disertacijoje nagrinėjama stacionari Navjė-Stokso sistema su nehomogenine kraštine sąlyga srityse su išėjimais į begalybę. Bendru atveju išėjimai į begalybę gali būti tiek paraboloidiniai, tiek sluoksnio tipo. Srities kraštą sudaro baigtinis skaičius nekompaktiškų jungių komponenčių, kurios suformuoja išorininį kraštą, ir baigtinis skaičius kompaktiškų jungių komponenčių, kurios suformuoja vidinį srities kraštą. Darydami prielaidą, kad srautai per vidinio krašto komponentes yra pakankamai maži, o srautų dydžiui per išorinio krašto komponentes nedarant jokių apribojimų, įrodome suformuluoto uždavinio bent vieno sprendinio egzistavimą. Priklausomai nuo srities geometrijos, uždavinio sprendinys gali turėti tiek baigtinį, tiek begalinį Dirichlė integralą.
|
4 |
Stacionari Navjė-Stokso sistema su nehomogenine kraštine sąlyga srityse su nekompaktiškais kraštais / Nonhomogeneous boundary value problem for the stationary Navier-Stokes system in domains with noncompact boundariesKaulakytė, Kristina 24 January 2013 (has links)
Disertacijoje nagrinėjama stacionari Navjė-Stokso sistema su nehomogenine kraštine sąlyga srityse su išėjimais į begalybę. Bendru atveju išėjimai į begalybę gali būti tiek paraboloidiniai, tiek sluoksnio tipo. Srities kraštą sudaro baigtinis skaičius nekompaktiškų jungių komponenčių, kurios suformuoja išorininį kraštą, ir baigtinis skaičius kompaktiškų jungių komponenčių, kurios suformuoja vidinį srities kraštą. Darydami prielaidą, kad srautai per vidinio krašto komponentes yra pakankamai maži, o srautų dydžiui per išorinio krašto komponentes nedarant jokių apribojimų, įrodome suformuluoto uždavinio bent vieno sprendinio egzistavimą. Priklausomai nuo srities geometrijos, uždavinio sprendinys gali turėti tiek baigtinį, tiek begalinį Dirichlė integralą. / In the thesis there is studied nonhomogenous boundary value problem for the stationary Navier-Stokes system in domains which may have two types of outlets to infinity: paraboloidal and layer type. The boundary is multiply connected. It consists of connected noncompact components, forming the outer boundary, and connected compact components, forming the inner boundary. We suppose that the fluxes over the components of the inner boundary are sufficiently small, while we do not impose any restrictions on fluxes over the infinite components of the outer boundary. We prove that the formulated problem admits at least one weak solution which, depending on the geometry of the domain, may have either finite or infinite Dirichlet integral.
|
Page generated in 0.0495 seconds