• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 31
  • 6
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 111
  • 46
  • 31
  • 19
  • 16
  • 15
  • 15
  • 15
  • 14
  • 14
  • 13
  • 12
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

The Mechanical Properties of Submicron-Thick, Large-Area 3C-SiC Diaphragms

Rawlinson, Patrick Theodore 26 June 2012 (has links)
No description available.
72

Optically Transduced Two-Dimensional (2D) Resonant Nanoelectromechanical Systems and Their Emerging Applications

Lee, Jaesung 08 February 2017 (has links)
No description available.
73

Emerging Power-Gating Techniques for Low Power Digital Circuits

Henry, Michael B. 29 November 2011 (has links)
As transistor sizes scale down and levels of integration increase, leakage power has become a critical problem in modern low-power microprocessors. This is especially true for ultra-low-voltage (ULV) circuits, where high levels of leakage force designers to chose relatively high threshold voltages, which limits performance. In this thesis, an industry-standard technique known as power-gating is explored, whereby transistors are used to disconnect the power from idle portions of a chip. Present power-gating implementations suffer from limitations including non-zero off-state leakage, which can aggregate to a large amount of wasted energy during long idle periods, and high energy overhead, which limits its use to long-term system-wide sleep modes. As this thesis will show however, by vastly increasing the effectiveness of power-gating through the use of emerging technologies, and by implementing aggressive hardware-oriented power-gating policies, leakage in microprocessors can be eliminated to a large extent. This allows the threshold voltage to be lowered, leading to ULV microprocessors with both low switching energy and high performance. The first emerging technology investigated is the Nanoelectromechnical-Systems (NEMS) switch, which is a CMOS-compatible mechanical relay with near-infinite off-resistance and low on-resistance. When used for power-gating, this switch completely eliminates off-state leakage, yet is compact enough to be contained on die. This has tremendous benefits for applications with long sleep times. For example, a NEMS-power-gated architecture performing an FFT per hour consumes 30 times less power than a transistor-power-gated architecture. Additionally, the low on-resistance can lower power-gating area overhead by 36-83\%. The second technology targets the high energy overhead associated with powering a circuit on and off. This thesis demonstrates that a new logic style specifically designed for ULV operation, Sense Amplifier Pass Transistor Logic (SAPTL), requires power-gates that are 8-10 times smaller, and consumes up to 15 times less boot-up energy, compared to static-CMOS. These abilities enable effective power-gating of an SAPTL circuit, even for very short idle periods. Microprocessor simulations demonstrate that a fine-grained power-gating policy, along with this drastically lower overhead, can result in up to a 44\% drop in energy. Encompassing these investigations is an energy estimation framework built around a cycle-accurate microprocessor simulator, which allows a wide range of circuit and power-gating parameters to be optimized. This framework implements two hardware-based power-gating schedulers that are completely invisible to the OS, and have extremely low hardware overhead, allowing for a large number of power-gated regions. All together, this thesis represents the most complete and forward-looking study on power-gating in the ULV region. The results demonstrate that aggressive power-gating allows designers to leverage the very low switching energy of ULV operation, while achieving performance levels that can greatly expand the capabilities of energy-constrained systems. / Ph. D.
74

Exploitation de nouveaux phénomènes dans les systèmes nanoélectromécaniques : réalisation d'un nanorésonateur accordable / Exploitation of new phenomena in nano-electromechanical systems : application to the realization of a tunable nanoresonator

Gouttenoire, Vincent 26 November 2009 (has links)
Ce travail de thèse porte sur l’étude de nouveaux phénomènes vibratoires dans les systèmes Nano-électromécaniques (NEMS) conçus à partir de nanofils (NFs) SiC ou de nanotubes de carbone (NCs) résonants. La configuration encastré-libre permet d'effectuer l'émission de champ (EC) pour caractériser nos échantillons et notamment mesurer le module de Young et le facteur de qualité (Q) de nos NEMS. Le chauffage du résonateur permet d'accroître fortement la valeur de Q des nanofils SiC (Qmax = 159 000). Les auto-oscillations observées sous EC sont obtenues seulement par l'application d'une tension continue et permettent un taux de conversion AC/DC de l'ordre de 50%. L'utilisation de NFs très résistifs couplée au courant d'EC est indispensable pour engendrer ces oscillations spontanées. La réalisation d'une nanoradio sous EC permet la démodulation d'un signal AM ou FM grâce à la résonance d'un NC. Nous décrivons une méthode originale pour exciter les vibrations d'un NF à partir du faisceau d'électrons d'un microscope électronique. L'évolution de la charge au bout du NF est la principale cause de ces auto-oscillations. La configuration encastré-encastré consiste à obtenir un transistor à base de NCs suspendus. Les composants sont caractérisés électriquement et mécaniquement dans un testeur sous pointe sous ultra vide à partir de techniques dites de mixing. La fréquence de résonance de ces échantillons est de l'ordre de 100 MHz et la démodulation d'un signal FM est réalisée pour la première fois dans cette configuration de NEMS. Pour l'ensemble des phénomènes découverts et traités dans ce manuscrit, un modèle et les simulations qui en découlent sont présentés et commentés / This thesis focuses on new phenomena in the mechanical resonances of SiC nanowires (NWs) and carbon nanotubes (CNs) of interest for the emerging field of nano-electro-mechanical systems (NEMS). The clamped-free confiuration allowed the study of our nanowire and nanotube samples by field emission (FE), including measuring the Young's modulus and the quality factor (Q). Heating NW resonators significantly increased their Q factor (Qmax = 159 000). Self-oscillations were observed during FE where only a DC voltage was applied, thus allowing DC/AC conversion with a rate of up to » 50%. Using highly resistive NWs coupled with FE current was required to generate these spontaneous oscillations. Achieving a nanoradio under FE allowed the demodulation of AM or FM signals through the mechanical resonance of CNs. We describe a new method to excite vibrations of a NW from the electron beam of an electron microscope. The evolution of the charge at the end of NW is the main source of these self-oscillations. The clamped-clamped configuration consists of a transistor based on suspended CNs. The devices are characterized electrically and mechanically in a probe station under ultrahigh vacuum with mixing techniques. The resonance frequencies of these samples was around 100 MHz. The demodulation of an FM signal was achieved for the first time in this NEMS configuration. For all the phenomena discovered and treated in this manuscript, a model and derived simulations are described and discussed
75

Principes alternatifs pour la détection de masse ultime via la dynamique non linéaire de capteurs résonants M/NEMS / Alternative principles for ultimate mass detection via the nonlinear dynamics of M/NEMS resonant sensors

Nguyen, Van-Nghi 11 December 2013 (has links)
Les capteurs résonants de type M/NEMS sont largement utilisés dans l’environnement biologique pour la mesure de masse de biomolécules en raison de leur grande précision combinée à une taille réduite. Classiquement, la détection et la quantification se basent sur le décalage fréquentiel induit par la masse ajoutée. Toutefois, ce décalage devient très faible et difficile à distinguer du bruit de mesure lorsque les masses considérées sont très petites. Il est théoriquement possible de gagner encore un ou plusieurs ordres de grandeur en résolution avec ces méthodes fréquentielles en diminuant encore les tailles et/ou en augmentant le rapport signal sur bruit, c’est-à-dire en actionnant de manière plus importante les résonateurs. Mais, dans ces conditions, les nanorésonateurs ont un comportement très fortement non-linéaire, source d’instabilités et de mixage de bruit basses et hautes fréquences susceptibles de dégrader la fiabilité et la précision des mesures. C’est pourquoi cette thèse a pour objectif de définir des principes de détection alternatifs basés sur l’exploitation des phénomènes non-linéaires, tels que les comportements hystérétiques et les bifurcations des courbes de réponse en fréquence. Pour cela, un modèle réduit de micro/nano-poutre résonante avec actionnement électrostatique est considéré. Les résultats numériques montrent que les brusques sauts d’amplitude à proximité des points de bifurcation permettent la détection de masses très faibles. Contrairement à la détection fréquentielle, ces sauts sont d’autant plus grands que la masse additionnelle est petite, ce qui rend cette technique particulièrement intéressante. De plus, le seuil de détection peut être ajusté avec la valeur de la fréquence de fonctionnement. Un mécanisme de réinitialisation est toutefois indispensable pour rendre la détection à nouveau possible après un saut d’amplitude. Afin d’automatiser la réinitialisation et ainsi permettre la détection en temps réel, un concept totalement innovant de détection de masse par balayage en fréquence des cycles d’hystérésis est proposé, qui permet de détecter, quantifier et localiser la masse ajoutée sur la poutre résonante. La mise en réseau de plusieurs poutres résonantes est également traitée et constitue un premier pas vers la mise en oeuvre de réseaux de milliers de capteurs. Pour cela, des architectures efficaces sont proposées et les modèles numériques sont adaptés en conséquence. Sur des configurations symétriques, l’exploitation des bifurcations de type brisure de symétrie permet là-encore d’améliorer la détection de masse. / Resonant M/NEMS mass sensors are widely used in biological environment for measuring the mass of biomolecules due to their high accuracy combined with a reduced size. Usually, the detection and the quantification are based on the frequency shift induced by an added mass. However, this shift becomes very small and difficult to distinguish from the noise of measurement as the considered masses are tiny. It is theoretically possible to increase further one or several orders of magnitude in resolution with these frequency methods by further reducing size and/or by increasing the signal-to-noise ratio, that is to say by operating more importantly the resonators. But in these conditions, the nanoresonators have a strongly nonlinear behavior, a source of instability and noise mix of low and high frequencies likely to degrade the reliability and the accuracy of measurements. Therefore, the thesis’s objective is to define alternative principles of detection based on exploiting the nonlinear phenomena, such as the hysteretic behavior and the bifurcations of frequency-response curves. To this end, a reduced model of resonant micro/nano-beam with electrostatic actuation is considered. The numerical results show that the sudden jumps in amplitude close to bifurcation points allow the detection of very small masses. Unlike the frequency detection, the smaller the added mass, the larger the increase of the jump, which makes this technique particularly interesting. In addition, the detection threshold can be adjusted with the value of the operating frequency. However, a mechanism of reinitialization is mandatory to make the detection possible again after a jump in amplitude. In order to automate the reinitialization and allow the detection in real-time, a completely innovative concept of mass detection by the frequency sweep of the hysteretic cycles is proposed to detect, quantify and locate the added mass on the resonant beam. An array of several resonant beams is also considered and constitutes a first step toward the implementation of arrays of thousands of sensors. Efficient architectures are proposed for this purpose and the numerical models are adapted accordingly. On symmetric configurations, exploiting the bifurcations of symmetry-breaking type allows here again to improve the mass detection.
76

Miniaturisation des capteurs MEMS et NEMS résonants en silicium : dispositifs, transduction, dynamique non-linéaire et applications

Hentz, Sébastien 05 September 2012 (has links) (PDF)
A large part of the activities described in what follows circle around a small number of questions: what is downscaling bene cial to in sensing? What is the technical and scienti c price one has to pay for downscaling? From a general point of view and at a very di erent scale, those are considerations close to the ITRS roadmap for More Moore in the MOS eld, and the tremendous research e orts and scienti c challenges demanded by the continuity of the Moore's law. Although the sensing eld may be included in the so-called More-Than-Moore movement, its evolution has been much less formalized than its MOS counterpart. This document will try to show how my activities modestly contributed to this dispersed e ort. As an introduction, a rst study will be brie y described in this chapter, study which was seminal for those activities as well as which of the group. A number of scienti c issues appear along this study: device physics, device structure, transduction, noise modelling, non-linearities. It is a good way to introduce how the document is structured: this is the work of a team, and the at least partially chronological order is nothing but a logical way to describe how this work have been part of the evolution of a team's work.
77

Wavelength Conversion Using Reconfigurable Photonic Crystal MEMS/NEMS Structures

Akdemir, Kahraman Daglar 10 January 2007 (has links)
Globally increasing levels of bandwidth and capacity requirements force the optical communications industry to produce new products that are faster, more powerful, and more efficient. In particular, optical-electronic-optical (O-E-O) conversions in Wavelength Division Multiplexing (WDM) mechanisms prevent higher data transfer speeds and create a serious bottleneck for optical communications. These O-E-O transitions are mostly encountered in the Wavelength converters of WDMs, and as a result, all-optical wavelength conversion methods have become extremely important. The main discussion in this thesis will concentrate on a specific all-optical wavelength conversion mechanism. In this mechanism, photonic crystal structures are integrated with moving MEMS/NEMS structures to create a state-of-the-art all-optical wavelength converter prototype. A wavelength conversion of 20% is achieved using this structure. Since the interaction of light with moving MEMS/NEMS structures plays an important role in the proposed wavelength conversion mechanism, modeling and simulation of electromagnetic waves becomes a very crucial step in the design process. Consequently, a subsection of this thesis will focus on a proposed enhancement to the finite-difference time-domain (FDTD) to model moving structures more efficiently and more realistically. This technique is named "Linear Dielectric Interpolation" and will be applied to more realistically and efficiently model the proposed photonic crystal MEMS/NEMS wavelength conversion mechanism.
78

Etude des potentialités des nanotubes de carbone dans le domaine hyperfréquence : Application à l'élaboration de matériaux nanocomposites et contribution à la miniaturisation de composants électromécaniques (NEMS)

Pacchini, Sebastien 18 December 2008 (has links) (PDF)
La découverte des nanotubes de carbone (NTCs) par S.Iijima en 1990 a permis d'explorer un nouveau monde à l'échelle nanométrique. Les études sur la synthèse des NTCs durant le début de cette décennie ont apporté une reproductibilité des formes allotropiques de carbone. Les propriétés mécaniques et électriques exceptionnelles des NTCs ont éveillé l'esprit des scientifiques afin de concevoir des systèmes touchant le domaine de la nanotechnologie. Dans ce contexte, mes travaux de recherches ont visé à étudier les potentialités des nanotubes de carbone dans le domaine des hyperfréquences. Deux types d'applications peuvent être distinguées : l'élaboration de matériau nano-composite mais aussi la miniaturisation des composants électromécaniques (NEMS). L'application la plus immédiate des NTCs consiste à les utiliser comme additif dans des polymères, thermoplastiques, thermodurcissables ou élastomères, afin d'en modifier les propriétés. L'utilisation des matériaux composites à base de nanotubes de carbone apparaît comme une voie prometteuse dans le domaine des nanotechnologies grâce à leurs propriétés structurales et électroniques très particulières. Pour élargir le domaine d'application des NTCs, nous avons étudié un nouveau matériau composite à base d'un polymère (BenzoCycloButène BCB'') et de nanotubes de carbone double parois (DNTCs) pour une utilisation aux fréquences micro-ondes. Nous rapportons ici une étude des propriétés micro-ondes de composites BCB/DNTCs en fonction de la concentration massique de nanotubes. Nous présentons, dans un premier temps, les méthodes d'homogénéisation et de fabrication du composite, puis nous traitons l'élaboration de structures de test adaptées à des mesures µondes et millimétriques. Après caractérisation, nous donnons le comportement spectral et la modélisation pour les pertes linéiques ainsi que e* (permittivité effective complexe). Cette étude a permis de montrer qu'il est possible de configurer les performances électriques d'un matériau composite en fonction du % de NTCs incorporés. Ceci peut permettre de réaliser des matériaux absorbants d'ondes électromagnétiques pour la microélectronique. Une autre possibilité d'utilisation est d'exploiter les propriétés physiques ainsi que dimensionnelles des NTCs pour étendre le concept de composants passifs reconfigurables et micrométriques (MEMS) à l'échelle nanométrique avec l'élaboration de Système Nano-Electro- Mécaniques (NEMS). Leurs dimensions nanométriques permettraient de concevoir de futurs dispositifs électroniques fortement miniaturisés. Nous nous sommes donc intéressés au développement d'une filière technologique d'interconnexions pour réaliser une capacité variable dont la partie mobile est réalisée à l'aide de NTCs. Plusieurs voies ont été étudiées. Une 1ère comporte la croissance localisée des NTCs, réalisée à 600°C minimum par le LPICM. Cette température a impliqué de nombreux choix quant à la filière d'interconnexions (procédés chauds-froids suivant le positionnement de l'étape de croissance des NTCs) et d'études de compatibilité thermique. Une seconde voie est basée sur l'emploie de film mince de NTCs dispersés aléatoirement.- Au final, cette étude représente une grande avancée vers l'élaboration de NEMS RF à base de NTCs.
79

Etude de nano-systèmes électro-mécaniques (NEMS) à base de nanotubes de carbone pour applications hyperfréquences

Ricart, Thibault 18 December 2008 (has links) (PDF)
Depuis la découverte des nanotubes de carbone en 1991 par Sumio Iijima et de leurs fascinantes caractéristiques électriques et mécaniques, de nombreuses études ont visé leurs utilisations dans toutes sortes d'applications et notamment en électronique. Ainsi, nous avons proposé d'axer nos travaux de recherche vers l'utilisation de nanotubes de carbone, de part leurs propriétés mécaniques et électriques exceptionnelles, pour la réalisation de fonctions électromécaniques pour des applications hyperfréquences (RF-NEMS). Une première partie de nos travaux a ainsi été dédiée à l'étude des propriétés des nanotubes de carbone et des architectures de composants pouvant potentiellement conduire à des composants RF-NEMS aux performances et fonctionnalités augmentées. La seconde partie de nos travaux a ainsi porté sur le développement de méthodes de modélisation et de protocoles de conception spécifiquement adaptés aux échelles et aux caractères multi physiques des composants. Un logiciel développé nous a ainsi permis de concevoir et de prédire les performances d'une capacité variable à base de nanotubes de carbone, dont nous avons démontré la viabilité contournant ainsi la forte résistance présenté par un nanotube unitaire, verrou actuel de cette technologie. Enfin, nous avons proposé les architectures de fonctions hyperfréquences plus complexes telle qu'un déphaseur accordable dont les performances, prédites par les outils que nous avons mis en place, démontrant l'attrait des nanotubes de carbone pour la réalisation de fonctions d'accord évoluées et performantes, avec un fort potentiel attendu au niveau de temps de réaction (se situant dans le domaine de la nanoseconde).
80

Conception, Fabrication, Caractérisation de microactionneurs à base de nanotubes de carbone

Raslan, Z. 17 December 2009 (has links) (PDF)
Les nanotechnologies offrent la possibilité de miniaturiser et réduire la consommation et le coût de fabrication des composants actuels. Elles permettent aussi de développer de nouvelles fonctionnalités afin de réaliser des systèmes intégrés de hautes performances pour des applications dans les domaines de l'électronique et des télécommunications. Les nanotubes de carbone sont particulièrement appropriés à être intégrés dans des NEMS, en raison de leurs dimensions et leurs propriétés mécaniques et électriques. Leur fréquence de résonance se situe dans la bande des GHz, ce qui les rend intéressants pour des systèmes micro-onde. Leur localisation directement sur dispositifs par la technique CVD (dépôt chimique en phase gazeuse) de croissance de NTC ouvre une voie pour la fabrication des NEMS à base de NTC. Toutefois il est intéressant de connaître le module de Young des NTC afin de dimensionner ces systèmes. Il est donc important de développer une technique caractérisation in-situ des NTC. Les travaux de cette thèse ont un double objectif : (1) l'extraction du module de Young des NTC obtenus par CVD et (2) la réalisation d'une brique de base permettant de lever les verrous technologiques liés à l'intégration des NTC. Une micro pince électrostatique à base de faisceaux de NTC verticaux a ainsi été modélisée et réalisée pour la première fois. La mesure expérimentale de la tension de pull-in de cette pince, associée à modèle électromécanique développé dans cette thèse, et qui prend en compte la densité des NTC a permis l'extraction du module de Young.

Page generated in 0.0345 seconds