1 |
Biometric and eddy-covariance estimates of ecosystem carbon storage at two boreal forest stands in Saskatchewan : 1994-2004Theede, Alison Deanne 31 May 2007
The boreal forest is one of the worlds largest forest biomes and comprises a major portion of the terrestrial carbon (C) sink. Quantifying the net C change in forest ecosystems is an important step in understanding and modeling the global C cycle. The goals of this project were: to estimate and compare the total change in ecosystem C over a 10-year period in two boreal forest stands using biometric and eddy-covariance approaches, and to evaluate the year-to-year changes in C uptake. This study utilized 10 years of eddy-covariance data and ecosys model data from the Old Aspen (OA) and Old Jack Pine (OJP) sites in central Saskatchewan, part of the Boreal Ecosystem Research and Monitoring Sites (BERMS). According to the eddy-covariance and C stock approaches, between 1994 and 2004 the net change in C storage at OA was 15.6 ± 4.0 and 18.2 ± 8.0 Mg C ha-1, respectively. At OJP, the 10-year net change in C storage from eddy-covariance was 5.8 ± 2.0 Mg C ha-1 in comparison to 6.9 ± 1.6 Mg C ha-1 from the carbon stock approach. While both sites were sinks of C between 1994 and 2004, the greatest increase in C occurred in different components - the forest floor at OA (14.6 Mg C ha-1) and in the living vegetation at OJP (8.0 Mg C ha-1). In 2004, total ecosystem C content was greater at OA (180.6 Mg C ha-1) than OJP (78.9 Mg C ha-1), with 50% (OA) and 39% (OJP) of the C in the detritus and mineral soil pools. During the 10-year period of eddy-covariance measurements, there was a positive correlation between both annual and growing season gross ecosystem photosynthesis (GEP) and live stem C biomass increment at OA, whereas no significant relationships were found at OJP. Stem C increment accounted for 30% of total net primary productivity (NPP) at both sites, and NPP/GEP ratios were 0.36 and 0.32 at OA and OJP, respectively. Overall, this study found good agreement between eddy-covariance and biometric estimates of ecosystem C change at OA and OJP between 1994 and 2004. Over that period at OA, eddy-covariance estimates of photosynthesis captured the inter-annual variability in C uptake based on the growth of tree rings.
|
2 |
Biometric and eddy-covariance estimates of ecosystem carbon storage at two boreal forest stands in Saskatchewan : 1994-2004Theede, Alison Deanne 31 May 2007 (has links)
The boreal forest is one of the worlds largest forest biomes and comprises a major portion of the terrestrial carbon (C) sink. Quantifying the net C change in forest ecosystems is an important step in understanding and modeling the global C cycle. The goals of this project were: to estimate and compare the total change in ecosystem C over a 10-year period in two boreal forest stands using biometric and eddy-covariance approaches, and to evaluate the year-to-year changes in C uptake. This study utilized 10 years of eddy-covariance data and ecosys model data from the Old Aspen (OA) and Old Jack Pine (OJP) sites in central Saskatchewan, part of the Boreal Ecosystem Research and Monitoring Sites (BERMS). According to the eddy-covariance and C stock approaches, between 1994 and 2004 the net change in C storage at OA was 15.6 ± 4.0 and 18.2 ± 8.0 Mg C ha-1, respectively. At OJP, the 10-year net change in C storage from eddy-covariance was 5.8 ± 2.0 Mg C ha-1 in comparison to 6.9 ± 1.6 Mg C ha-1 from the carbon stock approach. While both sites were sinks of C between 1994 and 2004, the greatest increase in C occurred in different components - the forest floor at OA (14.6 Mg C ha-1) and in the living vegetation at OJP (8.0 Mg C ha-1). In 2004, total ecosystem C content was greater at OA (180.6 Mg C ha-1) than OJP (78.9 Mg C ha-1), with 50% (OA) and 39% (OJP) of the C in the detritus and mineral soil pools. During the 10-year period of eddy-covariance measurements, there was a positive correlation between both annual and growing season gross ecosystem photosynthesis (GEP) and live stem C biomass increment at OA, whereas no significant relationships were found at OJP. Stem C increment accounted for 30% of total net primary productivity (NPP) at both sites, and NPP/GEP ratios were 0.36 and 0.32 at OA and OJP, respectively. Overall, this study found good agreement between eddy-covariance and biometric estimates of ecosystem C change at OA and OJP between 1994 and 2004. Over that period at OA, eddy-covariance estimates of photosynthesis captured the inter-annual variability in C uptake based on the growth of tree rings.
|
3 |
Afforestation and stand age affected soil respiration and net ecosystem productivity in hybrid poplar plantations in central Alberta, CanadaShi, Zheng Unknown Date
No description available.
|
4 |
Afforestation and stand age affected soil respiration and net ecosystem productivity in hybrid poplar plantations in central Alberta, CanadaShi, Zheng 11 1900 (has links)
Afforestation and stand development can significantly affect soil respiration and net ecosystem productivity (NEP). I studied 1) the effects of afforestation on NEP by comparing cropland previously planted to barley (on a barley-barley-alfalfa-alfalfa-alfalfa rotation) and that converted to a hybrid poplar (Populus deltoides Populus petrowskyana var. Walker) plantation and 2) the NEP along a chronosequence of stands aged 5-, 8-, 14-, and 16-year old in 2009 in central Alberta, Canada. Soil respiration and NEP decreased in the first two to three years after afforestation, while both generally increased with stand development. The ecosys model was used to simulate carbon dynamics in the plantations over a 20-year rotation under contrasting soil conditions. Soil conditions of the 14-year-old plantation accumulated the greatest amount of ecosystem carbon over the whole rotation. The research indicated that plantations could be a net carbon source in the first few years after afforestation and then became a net carbon sink, helping to mitigate net CO2 emissions for the remainder of the rotation. / Soil Science
|
5 |
Carbon, water, and energy dynamics of a temperate pine forest during the first decade since plantation on a former croplandChan, Felix January 2016 (has links)
This study presents the energy, carbon (C), and water exchange dynamics of a recently afforested temperate white pine (Pinus strobus L.) forest, established on former agricultural land in 2002, in southern Ontario, Canada during the initial thirteen years (2003–2015). Our observations show that the forest became a consistent sink of C after only 5 years of its establishment (ranging from 105 g C m–2 to 216 g C m–2 between 2008 to 2015), owing to sandy soils and low residual soil organic matter from prior agricultural activities. This region frequently experiences low precipitation (P) and soil moisture (VWC) limitations and/or heat stress in late summer, causing a reduction in net ecosystem productivity (NEP). Seasonal and annual dynamics of NEP showed reduced C uptake during years with heat and/or drought events (i.e. 2007 and 2012). In 2007, the impact of a seasonal drought was much more exacerbated when combined with a heatwave, resulting in a strong C source. Similarly, the inter-annual variability of evapotranspiration (ET) gradually increased with stand age (mean 370 mm yr–1) and water use efficiency (WUE) consistently increased (mean 2.65 g C kg–1 H2O). Quantum yield, α (0.019 to 0.045) and maximum photosynthetic capacity, Amax (4.37 to 33.6 µmol m–2s–1) increased steadily as the size and density of the canopy increased with stand age. Energy fluxes were influenced by canopy development as net radiation (Rn), latent heat (LE), and sensible heat (H) flux increased, while ground heat flux (G) peaked in 2007 and then gradually declined. Our analysis showed that daily C fluxes are primarily driven by Rn and temperature (Ts, Ta) which explained 47%, 61%, 52%, and 68% of the variability in gross ecosystem productivity (GEP), ecosystem respiration (RE), NEP, and ET. This study is a significant contribution to our understanding of the energy, C, and water dynamics of young planted conifer forests and controls on their growth and C uptake. Our findings demonstrate the potential of utilizing white pine as a means to sequester atmospheric CO2 in southern Ontario and other regions of North America with similar climate and site history. / Thesis / Master of Science (MSc)
|
6 |
THE IMPACT OF INSECT DEFOLIATION ON CARBON FLUXES IN A TEMPERATE DECIDUOUS FOREST / THE IMPACT OF INSECT DEFOLIATION ON A DECEDIOUS FORESTLatifovic, Lejla January 2023 (has links)
Temperate forests are an important global carbon sink. However, various environmental disturbances can impact carbon sequestration capabilities of these forests. In 2021, a record-breaking defoliation, caused by the spongy moth (Lymantria dispar L., formerly knows as the gypsy moth) occurred in eastern North America. In this study, we assess the impact of this spongy moth defoliation on carbon uptake in a mature oak-dominated temperate forest in the Great Lakes region in Canada, using eddy covariance flux data from 2012 to 2022. The forest is more than 90 years old and known as CA-TPD site in the AmeriFlux and global FLUXNET networks. Study results showed that prior to spongy moth defoliation the forest was a carbon sink with mean annual gross ecosystem productivity (GEP) of 1,367 ± 104, ecosystem respiration (RE) of 1,201 ± 145 and, net ecosystem productivity (NEP) of 197 ± 74 g C m−2 yr−1 over the 2012–2020 period. However, due the defoliation in the early growing season in 2021, GEP declined to 959 g C m-2 yr-1 and RE increased to 1,345 g C m-2 yr-1 causing the forest to became a large source of carbon with annual NEP of -351 g C m-2 yr−1. This large decline in annual NEP was a result of both reduced GEP (30%) and elevated RE (12%). However, in 2022, forest carbon fluxes recovered to pre-infestation levels, with a GEP value of 1,671 g C m-2 yr-1, an RE value of 1,287 g C m-2 yr-1, and an NEP value of 298 g C m-2 yr-1, indicating that the forest was once again a large carbon sink. This research demonstrates that major transient natural disturbances such as the 2021 spongy moth defoliation can have a significant impact on forest carbon dynamics in a future warmer climate. The extent to which North American temperate forests will remain a major carbon sink will depend on the severity and intensity of these disturbance events and rate of recovery of forests following the disturbance. / Thesis / Master of Science (MSc) / Temperate deciduous forests play an important role in carbon sequestration from the atmosphere. However, the impact of climate change, extreme weather, and disturbance events can alter the extent to which these forests sequester carbon, in some cases shifting their role from being a carbon sink to becoming a carbon source to the atmosphere. In 2021, a spongy moth infestation severely defoliated a mature oak-dominated temperate forest north of Lake Erie, Ontario, Canada, turning the forest from a carbon sink to a carbon source. Our analysis indicates that meteorological conditions during the early spring might have influenced the severity of this infestation. Specifically, the prevalence of dry and warm weather conditions enabled the moth to survive and thrive longer. This study shows the significant influence of natural disturbances on forest carbon dynamics as temperatures continue to rise due to climate change. The future role forests play in carbon sequestration will be determined by the severity of disturbance events and the effectiveness of forests to recover in the aftermath of these events.
|
7 |
Sustainable mangement of natural rangeland ecosystemsMontenegro-Ballestero, Johnny Unknown Date
No description available.
|
8 |
A comparison of the carbon dioxide fluxes of two annual cropping systems and a perennial hay field in southern Manitoba over 30 monthsTaylor, Amanda M. 08 January 2013 (has links)
The eddy-covariance method was used to measure net ecosystem productivity over three adjacent fields from 2009 to 2011: two annual cropping systems (oat-canola-oat and hay-oat-fallow) recently converted from perennial cropping, and a perennial hay/pasture. We compared the management practises, determined the net carbon budget, and examined the effects of inter-annual variability. Carbon accumulation began earlier in the spring and continued later in the fall at the perennial site, compared with the annual crop sites, due to a longer growing season and continual plant cover. Cumulative cropping season net ecosystem productivity at the perennial site ranged from 40 to 240 g C m^(-2) because of variable weather. Including harvest removals and manure additions, the perennial site gained 120 g carbon m^(-2) and the annual sites lost 240 and 415 g carbon m^(-2), respectively, over the 30-month period. This indicates that the annual cropping systems would decrease soil carbon at this location.
|
9 |
A comparison of the carbon dioxide fluxes of two annual cropping systems and a perennial hay field in southern Manitoba over 30 monthsTaylor, Amanda M. 08 January 2013 (has links)
The eddy-covariance method was used to measure net ecosystem productivity over three adjacent fields from 2009 to 2011: two annual cropping systems (oat-canola-oat and hay-oat-fallow) recently converted from perennial cropping, and a perennial hay/pasture. We compared the management practises, determined the net carbon budget, and examined the effects of inter-annual variability. Carbon accumulation began earlier in the spring and continued later in the fall at the perennial site, compared with the annual crop sites, due to a longer growing season and continual plant cover. Cumulative cropping season net ecosystem productivity at the perennial site ranged from 40 to 240 g C m^(-2) because of variable weather. Including harvest removals and manure additions, the perennial site gained 120 g carbon m^(-2) and the annual sites lost 240 and 415 g carbon m^(-2), respectively, over the 30-month period. This indicates that the annual cropping systems would decrease soil carbon at this location.
|
10 |
CARBON EXCHANGE IN A TEMPERATE DECIDUOUS FOREST IN SOUTHERN ONTARIOParsaud, Ananta R. 10 1900 (has links)
<p>Continuous measurements of carbon fluxes and meteorological variables were made at a newly initiated flux tower site at an oak-dominant temperate deciduous forest in Southern Ontario, Canada from January to December 2012. Results indicate this forest was a moderate carbon sink in 2012. Annual values of net ecosystem productivity (NEP), gross ecosystem productivity (GEP) and ecosystem respiration (R) were 263 ± 30, 1192 and 922 g C m<sup>-2</sup>, respectively. An unusual warm period in March caused a strong increase in R. Erratic peaks of daily air temperature in April also increased R. A drought in July and early August reduced NEP rates when soil moisture values reached the lowest point of the year in late July and early August (minimum 0.023 m<sup>3</sup> m<sup>-3</sup>). This decrease in NEP was mostly caused by a decrease in GEP, rather than increased R. Water use efficiency at this deciduous forest was 2.86 g C kg<sup>-1</sup> H<sub>2</sub>O, indicating conservative water use by the forest. Downwelling photosynthetic active radiation (PAR) was a dominant environmental control on photosynthesis, followed by air temperature and vapour pressure deficit, except in extreme dry periods when soil water stress affected carbon uptake. Extremely cloudy days in the growing season resulted in net carbon release due to low photosynthetic uptake values. Results indicate that large climatic fluctuations in this region may cause high instability in photosynthetic carbon uptake and release from soil carbon pools. This study helps to evaluate and quantify the responses of deciduous forests in the Great Lakes region to future climate change and extreme weather events.</p> / Master of Science (MSc)
|
Page generated in 0.1213 seconds