• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 7
  • 7
  • 7
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Network Representation Learning in Social Media

January 2018 (has links)
abstract: The popularity of social media has generated abundant large-scale social networks, which advances research on network analytics. Good representations of nodes in a network can facilitate many network mining tasks. The goal of network representation learning (network embedding) is to learn low-dimensional vector representations of social network nodes that capture certain properties of the networks. With the learned node representations, machine learning and data mining algorithms can be applied for network mining tasks such as link prediction and node classification. Because of its ability to learn good node representations, network representation learning is attracting increasing attention and various network embedding algorithms are proposed. Despite the success of these network embedding methods, the majority of them are dedicated to static plain networks, i.e., networks with fixed nodes and links only; while in social media, networks can present in various formats, such as attributed networks, signed networks, dynamic networks and heterogeneous networks. These social networks contain abundant rich information to alleviate the network sparsity problem and can help learn a better network representation; while plain network embedding approaches cannot tackle such networks. For example, signed social networks can have both positive and negative links. Recent study on signed networks shows that negative links have added value in addition to positive links for many tasks such as link prediction and node classification. However, the existence of negative links challenges the principles used for plain network embedding. Thus, it is important to study signed network embedding. Furthermore, social networks can be dynamic, where new nodes and links can be introduced anytime. Dynamic networks can reveal the concept drift of a user and require efficiently updating the representation when new links or users are introduced. However, static network embedding algorithms cannot deal with dynamic networks. Therefore, it is important and challenging to propose novel algorithms for tackling different types of social networks. In this dissertation, we investigate network representation learning in social media. In particular, we study representative social networks, which includes attributed network, signed networks, dynamic networks and document networks. We propose novel frameworks to tackle the challenges of these networks and learn representations that not only capture the network structure but also the unique properties of these social networks. / Dissertation/Thesis / Doctoral Dissertation Computer Science 2018
2

Deep Learning on Graph-structured Data

Lee, John Boaz T. 11 November 2019 (has links)
In recent years, deep learning has made a significant impact in various fields – helping to push the state-of-the-art forward in many application domains. Convolutional Neural Networks (CNN) have been applied successfully to tasks such as visual object detection, image super-resolution, and video action recognition while Long Short-term Memory (LSTM) and Transformer networks have been used to solve a variety of challenging tasks in natural language processing. However, these popular deep learning architectures (i.e., CNNs, LSTMs, and Transformers) can only handle data that can be represented as grids or sequences. Due to this limitation, many existing deep learning approaches do not generalize to problem domains where the data is represented as graphs – social networks in social network analysis or molecular graphs in chemoinformatics, for instance. The goal of this thesis is to help bridge the gap by studying deep learning solutions that can handle graph data naturally. In particular, we explore deep learning-based approaches in the following areas. 1. Graph Attention. In the real-world, graphs can be both large – with many complex patterns – and noisy which can pose a problem for effective graph mining. An effective way to deal with this issue is to use an attention-based deep learning model. An attention mechanism allows the model to focus on task-relevant parts of the graph which helps the model make better decisions. We introduce a model for graph classification which uses an attention-guided walk to bias exploration towards more task-relevant parts of the graph. For the task of node classification, we study a different model – one with an attention mechanism which allows each node to select the most task-relevant neighborhood to integrate information from. 2. Graph Representation Learning. Graph representation learning seeks to learn a mapping that embeds nodes, and even entire graphs, as points in a low-dimensional continuous space. The function is optimized such that the geometric distance between objects in the embedding space reflect some sort of similarity based on the structure of the original graph(s). We study the problem of learning time-respecting embeddings for nodes in a dynamic network. 3. Brain Network Discovery. One of the fundamental tasks in functional brain analysis is the task of brain network discovery. The brain is a complex structure which is made up of various brain regions, many of which interact with each other. The objective of brain network discovery is two-fold. First, we wish to partition voxels – from a functional Magnetic Resonance Imaging scan – into functionally and spatially cohesive regions (i.e., nodes). Second, we want to identify the relationships (i.e., edges) between the discovered regions. We introduce a deep learning model which learns to construct a group-cohesive partition of voxels from the scans of multiple individuals in the same group. We then introduce a second model which can recover a hierarchical set of brain regions, allowing us to examine the functional organization of the brain at different levels of granularity. Finally, we propose a model for the problem of unified and group-contrasting edge discovery which aims to discover discriminative brain networks that can help us to better distinguish between samples from different classes.
3

Deep Learning on Graph-structured Data

Lee, John Boaz T 11 November 2019 (has links)
In recent years, deep learning has made a significant impact in various fields – helping to push the state-of-the-art forward in many application domains. Convolutional Neural Networks (CNN) have been applied successfully to tasks such as visual object detection, image super-resolution, and video action recognition while Long Short-term Memory (LSTM) and Transformer networks have been used to solve a variety of challenging tasks in natural language processing. However, these popular deep learning architectures (i.e., CNNs, LSTMs, and Transformers) can only handle data that can be represented as grids or sequences. Due to this limitation, many existing deep learning approaches do not generalize to problem domains where the data is represented as graphs – social networks in social network analysis or molecular graphs in chemoinformatics, for instance. The goal of this thesis is to help bridge the gap by studying deep learning solutions that can handle graph data naturally. In particular, we explore deep learning-based approaches in the following areas. 1. Graph Attention. In the real-world, graphs can be both large – with many complex patterns – and noisy which can pose a problem for effective graph mining. An effective way to deal with this issue is to use an attention-based deep learning model. An attention mechanism allows the model to focus on task-relevant parts of the graph which helps the model make better decisions. We introduce a model for graph classification which uses an attention-guided walk to bias exploration towards more task-relevant parts of the graph. For the task of node classification, we study a different model – one with an attention mechanism which allows each node to select the most task-relevant neighborhood to integrate information from. 2. Graph Representation Learning. Graph representation learning seeks to learn a mapping that embeds nodes, and even entire graphs, as points in a low-dimensional continuous space. The function is optimized such that the geometric distance between objects in the embedding space reflect some sort of similarity based on the structure of the original graph(s). We study the problem of learning time-respecting embeddings for nodes in a dynamic network. 3. Brain Network Discovery. One of the fundamental tasks in functional brain analysis is the task of brain network discovery. The brain is a complex structure which is made up of various brain regions, many of which interact with each other. The objective of brain network discovery is two-fold. First, we wish to partition voxels – from a functional Magnetic Resonance Imaging scan – into functionally and spatially cohesive regions (i.e., nodes). Second, we want to identify the relationships (i.e., edges) between the discovered regions. We introduce a deep learning model which learns to construct a group-cohesive partition of voxels from the scans of multiple individuals in the same group. We then introduce a second model which can recover a hierarchical set of brain regions, allowing us to examine the functional organization of the brain at different levels of granularity. Finally, we propose a model for the problem of unified and group-contrasting edge discovery which aims to discover discriminative brain networks that can help us to better distinguish between samples from different classes.
4

DECEPTIVE REVIEW IDENTIFICATION VIA REVIEWER NETWORK REPRESENTATION LEARNING

Shih-Feng Yang (11502553) 19 December 2021 (has links)
<div><div>With the growth of the popularity of e-commerce and mobile apps during the past decade, people rely on online reviews more than ever before for purchasing products, booking hotels, and choosing all kinds of services. Users share their opinions by posting product reviews on merchant sites or online review websites (e.g., Yelp, Amazon, TripAdvisor). Although online reviews are valuable information for people who are interested in products and services, many reviews are manipulated by spammers to provide untruthful information for business competition. Since deceptive reviews can damage the reputation of brands and mislead customers’ buying behaviors, the identification of fake reviews has become an important topic for online merchants. Among the computational approaches proposed for fake review identification, network-based fake review analysis jointly considers the information from review text, reviewer behaviors, and production information. Researchers have proposed network-based methods (e.g., metapath) on heterogeneous networks, which have shown promising results.</div><div><br></div><div>However, we’ve identified two research gaps in this study: 1) We argue the previous network-based reviewer representations are not sufficient to preserve the relationship of reviewers in networks. To be specific, previous studies only considered first-order proximity, which indicates the observable connection between reviewers, but not second-order proximity, which captures the neighborhood structures where two vertices overlap. Moreover, although previous network-based fake review studies (e.g., metapath) connect reviewers through feature nodes across heterogeneous networks, they ignored the multi-view nature of reviewers. A view is derived from a single type of proximity or relationship between the nodes, which can be characterized by a set of edges. In other words, the reviewers could form different networks with regard to different relationships. 2) The text embeddings of reviews in previous network-based fake review studies were not considered with reviewer embeddings.</div><div><br></div><div>To tackle the first gap, we generated reviewer embeddings via MVE (Qu et al., 2017), a framework for multi-view network representation learning, and conducted spammer classification experiments to examine the effectiveness of the learned embeddings for distinguishing spammers and non-spammers. In addition, we performed unsupervised hierarchical clustering to observe the clusters of the reviewer embeddings. Our results show the clusters generated based on reviewer embeddings capture the difference between spammers and non-spammers better than those generated based on reviewers’ features.</div><div><br></div><div>To fill the second gap, we proposed hybrid embeddings that combine review text embeddings with reviewer embeddings (i.e., the vector that represents a reviewer’s characteristics, such as writing or behavioral patterns). We conducted fake review classification experiments to compare the performance between using hybrid embeddings (i.e., text+reviewer) as features and using text-only embeddings as features. Our results suggest that hybrid embedding is more effective than text-only embedding for fake review identification. Moreover, we compared the prediction performance of the hybrid embeddings with baselines and showed our approach outperformed others on fake review identification experiments.</div><div><br></div><div>The contributions of this study are four-fold: 1) We adopted a multi-view representation learning approach for reviewer embedding learning and analyze the efficacy of the embeddings used for spammer classification and fake review classification. 2) We proposed a hybrid embedding that considers the characteristics of both review text and the reviewer. Our results are promising and suggest hybrid embedding is very effective for fake review identification. 3) We proposed a heuristic network construction approach that builds a user network based on user features. 4) We evaluated how different spammer thresholds impact the performance of fake review classification. Several studies have used the same datasets as we used in this study, but most of them followed the spammer definition mentioned by Jindal and Liu (2008). We argued that the spammer definition should be configurable based on different datasets. Our findings showed that by carefully choosing the spammer thresholds for the target datasets, hybrid embeddings have higher efficacy for fake review classification.</div></div>
5

Fast-NetMF: Graph Embedding Generation on Single GPU and Multi-core CPUs with NetMF

Shanmugam Sakthivadivel, Saravanakumar 24 October 2019 (has links)
No description available.
6

Network Representation Theory in Materials Science and Global Value Chain Analysis

Haneberg, Mats C. 07 April 2023 (has links)
This thesis is divided into two distinct chapters. In the first chapter, we apply network representation learning to the field of materials science in order to predict aluminum grain boundaries' properties and locate the most influential atoms and subgraphs within each grain boundary. We create fixed-length representations of the aluminum grain boundaries that successfully capture grain boundary structure and allow us to accurately predict grain boundary energy. We do this through two distinct methods. The first method we use is a graph convolutional neural network, a semi-supervised deep learning algorithm, and the second method is graph2vec, an unsupervised representation learning algorithm. The second chapter presents our dynamic global value chain network, the combination of the dynamic global supply chain network and the dynamic global strategic alliance network. Our global value chain network provides a level of scope and accessibility not found in any other global value chain network, commercial or academic. Through applications of network theory, we discover business applications that would increase the robustness and resilience of the global value chain. We accomplish this through an analysis of the static, dynamic, and community structure of our global value chain network.
7

Real-time Anomaly Detection on Financial Data

Martignano, Anna January 2020 (has links)
This work presents an investigation of tailoring Network Representation Learning (NRL) for an application in the Financial Industry. NRL approaches are data-driven models that learn how to encode graph structures into low-dimensional vector spaces, which can be further exploited by downstream Machine Learning applications. They can potentially bring a lot of benefits in the Financial Industry since they extract in an automatic way features that can provide useful input regarding graph structures, called embeddings. Financial transactions can be represented as a network, and through NRL, it is possible to extract embeddings that reflect the intrinsic inter-connected nature of economic relationships. Such embeddings can be used for several purposes, among which Anomaly Detection to fight financial crime.This work provides a qualitative analysis over state-of-the-art NRL models, which identifies Graph Convolutional Network (ConvGNN) as the most suitable category of approaches for Financial Industry but with a certain need for further improvement. Financial Industry poses additional challenges when modelling a NRL solution. Despite the need of having a scalable solution to handle real-world graph with considerable dimensions, it is necessary to take into consideration several characteristics: transactions graphs are inherently dynamic since every day new transactions are executed and nodes can be heterogeneous. Besides, everything is further complicated by the need to have updated information in (near) real-time due to the sensitivity of the application domain. For these reasons, GraphSAGE has been considered as a base for the experiments, which is an inductive ConvGNN model. Two variants of GraphSAGE are presented: a dynamic variant whose weights evolve accordingly with the input sequence of graph snapshots, and a variant specifically meant to handle bipartite graphs. These variants have been evaluated by applying them to real-world data and leveraging the generated embeddings to perform Anomaly Detection. The experiments demonstrate that leveraging these variants leads toimagecomparable results with other state-of-the-art approaches, but having the advantage of being suitable to handle real-world financial data sets. / Detta arbete presenterar en undersökning av tillämpningar av Network Representation Learning (NRL) inom den finansiella industrin. Metoder inom NRL möjliggör datadriven kondensering av grafstrukturer till lågdimensionella och lätthanterliga vektorer.Dessa vektorer kan sedan användas i andra maskininlärningsuppgifter. Närmare bestämt, kan metoder inom NRL underlätta hantering av och informantionsutvinning ur beräkningsintensiva och storskaliga grafer inom den finansiella sektorn, till exempel avvikelsehantering bland finansiella transaktioner. Arbetet med data av denna typ försvåras av det faktum att transaktionsgrafer är dynamiska och i konstant förändring. Utöver detta kan noderna, dvs transaktionspunkterna, vara vitt skilda eller med andra ord härstamma från olika fördelningar.I detta arbete har Graph Convolutional Network (ConvGNN) ansetts till den mest lämpliga lösningen för nämnda tillämpningar riktade mot upptäckt av avvikelser i transaktioner. GraphSAGE har använts som utgångspunkt för experimenten i två olika varianter: en dynamisk version där vikterna uppdateras allteftersom nya transaktionssekvenser matas in, och en variant avsedd särskilt för bipartita (tvådelade) grafer. Dessa varianter har utvärderats genom användning av faktiska datamängder med avvikelsehantering som slutmål.

Page generated in 0.3894 seconds