• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1288
  • 349
  • 214
  • 91
  • 65
  • 53
  • 40
  • 36
  • 27
  • 17
  • 14
  • 13
  • 13
  • 13
  • 7
  • Tagged with
  • 2666
  • 2666
  • 836
  • 820
  • 592
  • 571
  • 449
  • 410
  • 405
  • 333
  • 310
  • 284
  • 259
  • 248
  • 243
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
591

Hardware Implementation of Soft Computing Approaches for an Intelligent Wall-following Vehicle

Tsui, Willie January 2007 (has links)
Soft computing techniques are generally well-suited for vehicular control systems that are usually modeled by highly nonlinear differential equations and working in unstructured environment. To demonstrate their applicability, two intelligent controllers based upon fuzzy logic theories and neural network paradigms are designed for performing a wall-following task and an autonomous parking task. Based on performance and flexibility considerations, the two controllers are implemented onto a reconfigurable hardware platform, namely a Field Programmable Gate Array (FPGA). As the number of comparative studies of these two embedded controllers designed for the same application is limited in the literature, one of the main goals of this research work has been to evaluate and compare the two controllers in terms of hardware resource requirements, operational speeds and trajectory tracking errors in following different pre-defined trajectories. The main advantages and disadvantages of each of the controllers are presented and discussed in details. Challenging issues for implementation of the controllers on the FPGA platform are also highlighted. As the two controllers exhibit benefits and drawbacks under different circumstances, this research suggests as well a hybrid controller scheme as an attempt to integrate the benefits of both control units. To evaluate its performance, the hybrid controller is tested on the same pre-defined trajectories and the corresponding results are compared to that of the fuzzy logic and the neural network based controllers. For further demonstration of the capabilities of the wall-following controllers in other applications, the fuzzy logic and the neural network controllers are used in a parallel parking system. We see this work to be a stepping stone for further research work aiming at real world implementation of the controllers on Application Specified Integrated Circuit (ASIC) type of environment.
592

Wavelet Shrinkage Based Image Denoising using Soft Computing

Bai, Rong 08 August 2008 (has links)
Noise reduction is an open problem and has received considerable attention in the literature for several decades. Over the last two decades, wavelet based methods have been applied to the problem of noise reduction and have been shown to outperform the traditional Wiener filter, Median filter, and modified Lee filter in terms of root mean squared error (MSE), peak signal noise ratio (PSNR) and other evaluation methods. In this research, two approaches for the development of high performance algorithms for de-noising are proposed, both based on soft computing tools, such as fuzzy logic, neural networks, and genetic algorithms. First, an improved additive noise reduction method for digital grey scale nature images, which uses an interval type-2 fuzzy logic system to shrink wavelet coefficients, is proposed. This method is an extension of a recently published approach for additive noise reduction using a type-1 fuzzy logic system based wavelet shrinkage. Unlike the type-1 fuzzy logic system based wavelet shrinkage method, the proposed approach employs a thresholding filter to adjust the wavelet coefficients according to the linguistic uncertainty in neighborhood values, inter-scale dependencies and intra-scale correlations of wavelet coefficients at different resolutions by exploiting the interval type-2 fuzzy set theory. Experimental results show that the proposed approach can efficiently and rapidly remove additive noise from digital grey scale images. Objective analysis and visual observations show that the proposed approach outperforms current fuzzy non-wavelet methods and fuzzy wavelet based methods, and is comparable with some recent but more complex wavelet methods, such as Hidden Markov Model based additive noise de-noising method. The main differences between the proposed approach and other wavelet shrinkage based approaches and the main improvements of the proposed approach are also illustrated in this thesis. Second, another improved method of additive noise reduction is also proposed. The method is based on fusing the results of different filters using a Fuzzy Neural Network (FNN). The proposed method combines the advantages of these filters and has outstanding ability of smoothing out additive noise while preserving details of an image (e.g. edges and lines) effectively. A Genetic Algorithm (GA) is applied to choose the optimal parameters of the FNN. The experimental results show that the proposed method is powerful for removing noise from natural images, and the MSE of this approach is less, and the PSNR of is higher, than that of any individual filters which are used for fusion. Finally, the two proposed approaches are compared with each other from different point of views, such as objective analysis in terms of mean squared error(MSE), peak signal to noise ratio (PSNR), image quality index (IQI) based on quality assessment of distorted images, and Information Theoretic Criterion (ITC) based on a human vision model, computational cost, universality, and human observation. The results show that the proposed FNN based algorithm optimized by GA has the best performance among all testing approaches. Important considerations for these proposed approaches and future work are discussed.
593

Cellular Neural Networks with Switching Connections

Devoe, Malcom, Devoe, Malcom W, Jr. 06 May 2012 (has links)
Artificial neural networks are widely used for parallel processing of data analysis and visual information. The most prominent example of artificial neural networks is a cellular neural network (CNN), composed from two-dimensional arrays of simple first-order dynamical systems (“cells”) that are interconnected by wires. The information, to be processed by a CNN, represents the initial state of the network, and the parallel information processing is performed by converging to one of the stable spatial equilibrium states of the multi-stable CNN. This thesis studies a specific type of CNNs designed to perform the winner-take-all function of finding the largest among the n numbers, using the network dynamics. In a wider context, this amounts to automatically detecting a target spot in the given visual picture. The research, reported in this thesis, demonstrates that the addition of fast on-off switching (blinking) connections significantly improves the functionality of winner-take-all CNNs. Numerical calculations are performed to reveal the dependence of the probability, that the CNN correctly classifies the largest number, on the switching frequency.
594

Growing neural gas for intelligent robot vision with range imaging camera

Sasaki, Hironobu, Fukuda, Toshio, Satomi, Masashi, Kubota, Naoyuki 09 August 2009 (has links)
No description available.
595

ANALYSIS & STUDY OF AI TECHNIQUES FORAUTOMATIC CONDITION MONITORING OFRAILWAY TRACK INFRASTRUCTURE : Artificial Intelligence Techniques

Podder, Tanmay January 2010 (has links)
Since the last decade the problem of surface inspection has been receiving great attention from the scientific community, the quality control and the maintenance of products are key points in several industrial applications.The railway associations spent much money to check the railway infrastructure. The railway infrastructure is a particular field in which the periodical surface inspection can help the operator to prevent critical situations. The maintenance and monitoring of this infrastructure is an important aspect for railway association.That is why the surface inspection of railway also makes importance to the railroad authority to investigate track components, identify problems and finding out the way that how to solve these problems. In railway industry, usually the problems find in railway sleepers, overhead, fastener, rail head, switching and crossing and in ballast section as well. In this thesis work, I have reviewed some research papers based on AI techniques together with NDT techniques which are able to collect data from the test object without making any damage. The research works which I have reviewed and demonstrated that by adopting the AI based system, it is almost possible to solve all the problems and this system is very much reliable and efficient for diagnose problems of this transportation domain. I have reviewed solutions provided by different companies based on AI techniques, their products and reviewed some white papers provided by some of those companies. AI based techniques likemachine vision, stereo vision, laser based techniques and neural network are used in most cases to solve the problems which are performed by the railway engineers.The problems in railway handled by the AI based techniques performed by NDT approach which is a very broad, interdisciplinary field that plays a critical role in assuring that structural components and systems perform their function in a reliable and cost effective fashion. The NDT approach ensures the uniformity, quality and serviceability of materials without causing any damage of that materials is being tested. This testing methods use some way to test product like, Visual and Optical testing, Radiography, Magnetic particle testing, Ultrasonic testing, Penetrate testing, electro mechanic testing and acoustic emission testing etc. The inspection procedure has done periodically because of better maintenance. This inspection procedure done by the railway engineers manually with the aid of AI based techniques.The main idea of thesis work is to demonstrate how the problems can be reduced of thistransportation area based on the works done by different researchers and companies. And I have also provided some ideas and comments according to those works and trying to provide some proposal to use better inspection method where it is needed.The scope of this thesis work is automatic interpretation of data from NDT, with the goal of detecting flaws accurately and efficiently. AI techniques such as neural networks, machine vision, knowledge-based systems and fuzzy logic were applied to a wide spectrum of problems in this area. Another scope is to provide an insight into possible research methods concerning railway sleeper, fastener, ballast and overhead inspection by automatic interpretation of data.In this thesis work, I have discussed about problems which are arise in railway sleepers,fastener, and overhead and ballasted track. For this reason I have reviewed some research papers related with these areas and demonstrated how their systems works and the results of those systems. After all the demonstrations were taking place of the advantages of using AI techniques in contrast with those manual systems exist previously.This work aims to summarize the findings of a large number of research papers deploying artificial intelligence (AI) techniques for the automatic interpretation of data from nondestructive testing (NDT). Problems in rail transport domain are mainly discussed in this work. The overall work of this paper goes to the inspection of railway sleepers, fastener, ballast and overhead.
596

Developing Box-Pushing Behaviours Using Evolutionary Robotics

Van Lierde, Boris January 2011 (has links)
The context of this report and the IRIDIA laboratory are described in the preface. Evolutionary Robotics and the box-pushing task are presented in the introduction.The building of a test system supporting Evolutionary Robotics experiments is then detailed. This system is made of a robot simulator and a Genetic Algorithm. It is used to explore the possibility of evolving box-pushing behaviours. The bootstrapping problem is explained, and a novel approach for dealing with it is proposed, with results presented.Finally, ideas for extending this approach are presented in the conclusion.
597

Wavelet Shrinkage Based Image Denoising using Soft Computing

Bai, Rong 08 August 2008 (has links)
Noise reduction is an open problem and has received considerable attention in the literature for several decades. Over the last two decades, wavelet based methods have been applied to the problem of noise reduction and have been shown to outperform the traditional Wiener filter, Median filter, and modified Lee filter in terms of root mean squared error (MSE), peak signal noise ratio (PSNR) and other evaluation methods. In this research, two approaches for the development of high performance algorithms for de-noising are proposed, both based on soft computing tools, such as fuzzy logic, neural networks, and genetic algorithms. First, an improved additive noise reduction method for digital grey scale nature images, which uses an interval type-2 fuzzy logic system to shrink wavelet coefficients, is proposed. This method is an extension of a recently published approach for additive noise reduction using a type-1 fuzzy logic system based wavelet shrinkage. Unlike the type-1 fuzzy logic system based wavelet shrinkage method, the proposed approach employs a thresholding filter to adjust the wavelet coefficients according to the linguistic uncertainty in neighborhood values, inter-scale dependencies and intra-scale correlations of wavelet coefficients at different resolutions by exploiting the interval type-2 fuzzy set theory. Experimental results show that the proposed approach can efficiently and rapidly remove additive noise from digital grey scale images. Objective analysis and visual observations show that the proposed approach outperforms current fuzzy non-wavelet methods and fuzzy wavelet based methods, and is comparable with some recent but more complex wavelet methods, such as Hidden Markov Model based additive noise de-noising method. The main differences between the proposed approach and other wavelet shrinkage based approaches and the main improvements of the proposed approach are also illustrated in this thesis. Second, another improved method of additive noise reduction is also proposed. The method is based on fusing the results of different filters using a Fuzzy Neural Network (FNN). The proposed method combines the advantages of these filters and has outstanding ability of smoothing out additive noise while preserving details of an image (e.g. edges and lines) effectively. A Genetic Algorithm (GA) is applied to choose the optimal parameters of the FNN. The experimental results show that the proposed method is powerful for removing noise from natural images, and the MSE of this approach is less, and the PSNR of is higher, than that of any individual filters which are used for fusion. Finally, the two proposed approaches are compared with each other from different point of views, such as objective analysis in terms of mean squared error(MSE), peak signal to noise ratio (PSNR), image quality index (IQI) based on quality assessment of distorted images, and Information Theoretic Criterion (ITC) based on a human vision model, computational cost, universality, and human observation. The results show that the proposed FNN based algorithm optimized by GA has the best performance among all testing approaches. Important considerations for these proposed approaches and future work are discussed.
598

Electricity market clearing price forecasting under a deregulated electricity market

Yan, Xing 10 November 2009 (has links)
Under deregulated electric market, electricity price is no longer set by the monopoly utility company rather it responds to the market and operating conditions. Offering the right amount of electricity at the right time with the right bidding price has become the key for utility companies pursuing maximum profits under deregulated electricity market. Therefore, electricity market clearing price (MCP) forecasting became essential for decision making, scheduling and bidding strategy planning purposes. However, forecasting electricity MCP is a very difficult problem due to uncertainties associated with input variables.<p> Neural network based approach promises to be an effective forecasting tool in an environment with high degree of non-linearity and uncertainty. Although there are several techniques available for short-term MCP forecasting, very little has been done to do mid-term MCP forecasting. Two new artificial neural networks have been proposed and reported in this thesis that can be utilized to forecast mid-term daily peak and mid-term hourly electricity MCP. The proposed neural networks can simulate the electricity MCP with electricity hourly demand, electricity daily peak demand, natural gas price and precipitation as input variables. Two situations have been considered; electricity MCP forecasting under real deregulated electric market and electricity MCP forecasting under deregulated electric market with perfect competition. The PJM interconnect system has been utilized for numerical results. Techniques have been developed to overcome difficulties in training the neural network and improve the training results.
599

Improving WiFi positioning through the use of successive in-sequence signal strength samples

Hallström, Per, Dellrup, Per January 2006 (has links)
As portable computers and wireless networks are becoming ubiquitous, it is natural to consider the user’s position as yet another aspect to take into account when providing services that are tailored to meet the needs of the consumers. Location aware systems could guide persons through buildings, to a particular bookshelf in a library or assist in a vast variety of other applications that can benefit from knowing the user’s position. In indoor positioning systems, the most commonly used method for determining the location is to collect samples of the strength of the received signal from each base station that is audible at the client’s position and then pass the signal strength data on to a positioning server that has been previously fed with example signal strength data from a set of reference points where the position is known. From this set of reference points, the positioning server can interpolate the client’s current location by comparing the signal strength data it has collected with the signal strength data associated with every reference point. Our work proposes the use of multiple successive received signal strength samples in order to capture periodic signal strength variations that are the result of effects such as multi-path propagation, reflections and other types of radio interference. We believe that, by capturing these variations, it is possible to more easily identify a particular point; this is due to the fact that the signal strength fluctuations should be rather constant at every position, since they are the result of for example reflections on the fixed surfaces of the building’s interior. For the purpose of investigating our assumptions, we conducted measurements at a site at Växjö university, where we collected signal strength samples at known points. With the data collected, we performed two different experiments: one with a neural network and one where the k-nearest-neighbor method was used for position approximation. For each of the methods, we performed the same set of tests with single signal strength samples and with multiple successive signal strength samples, to evaluate their respective performances. We concluded that the k-nearest-neighbor method does not seem to benefit from multiple successive signal strength samples, at least not in our setup, compared to when using single signal strength samples. However, the neural network performed about 17% better when multiple successive signal strength samples were used.
600

Massiv parallele Systeme, Teil 2: Topologiesynthese für ausgewählte Referenzmuster

Schulze, Rainer W. 12 November 2012 (has links) (PDF)
In natürlichen neuronalen Systemen finde der Informationsaustausch auf der Basis diffundierender Transmittermoleküle statt. Die synaptische Verbindungsstärke zwischen den Neuronen ist der relativen Häufigkeit der Inanspruchnahme einer synaptischen Verbindung angepaßt und die Mächtigkeit des transferierten Transmitterstroms der Depolarisationshäufigkeit eines jeden Neurons. Damit ist die neuronale Struktur sowohl an verschiedene Erregungsmuster anpassungsfähig als auch invariant gegenüber partiellen Ausfällen der Topologie. Der davon abgeleitete Ansatz zur Topologiesynthese für massiv parallele Systeme basiert auf naheliegenden Analogieschlüssen zwischen beiden Systemen. Für das massiv parallele System wird die im Teil 1 (Topologieanalyse) angegebene Prinzipdarstellung eines Prozessorfeldes mit zugeordnetem Verkehrsfeld zugrundegelegt. Die synaptische Verbindungsstärke sei durch die topologische Weglänge zwischen zwei Verkehrsknoten nachgebildet und die genannte Transferrate durch die von einem Verkehrsknoten immittierbare maximale Datenrate. Auch die Dynamik eines massiv parallelen Systems läßt sich anschaulich als Diffusionsprozeß darstellen, beschrieben durch eine Diffusionsgleichung. Die Parameter dieser Gleichung sind geeignet, die Güte der Topologie des massiv parallelen Systems quantitativ zu beurteilen. An zwei ausgewählten Referenzmustern wird dies vorgenommen.

Page generated in 0.0332 seconds