351 |
Long-term Forecasting Heat Use in Sweden's Residential Sector using Genetic Algorithms and Neural NetworkMomtaz, Alireza, Befkin, Mohammad January 2024 (has links)
In this study, the parameters of population, gross domestic product (GDP), heat price, U-value, and temperature have been used to predict heat consumption for Sweden till 2050. It should be noted that the heat consumption has been considered for multi-family houses. Most multi-family houses (MFH) get their primary heat from district heating (DH). A literature analysis of various models and variables has been conducted to enhance comprehension of forecasting and its process. The majority of earlier research has focused on electricity or energy rather than heat. The aim of this study is to create a model (linear and non-linear) from 1993 to 2019 with a minimum error as possible, and then use the genetic algorithm (GA) and neural network (NN) to predict Sweden's heat consumption till 2050
|
352 |
Variational networks in magnetic resonance imaging - Application to spiral cardiac MRI and investigations on image quality / Variational Networks in der Magnetresonanztomographie - Anwendung auf spirale Herzbildgebung und Untersuchungen zur BildqualitätKleineisel, Jonas January 2024 (has links) (PDF)
Acceleration is a central aim of clinical and technical research in magnetic resonance imaging (MRI) today, with the potential to increase robustness, accessibility and patient comfort, reduce cost, and enable entirely new kinds of examinations. A key component in this endeavor is image reconstruction, as most modern approaches build on advanced signal and image processing. Here, deep learning (DL)-based methods have recently shown considerable potential, with numerous publications demonstrating benefits for MRI reconstruction. However, these methods often come at the cost of an increased risk for subtle yet critical errors. Therefore, the aim of this thesis is to advance DL-based MRI reconstruction, while ensuring high quality and fidelity with measured data. A network architecture specifically suited for this purpose is the variational network (VN). To investigate the benefits these can bring to non-Cartesian cardiac imaging, the first part presents an application of VNs, which were specifically adapted to the reconstruction of accelerated spiral acquisitions. The proposed method is compared to a segmented exam, a U-Net and a compressed sensing (CS) model using qualitative and quantitative measures. While the U-Net performed poorly, the VN as well as the CS reconstruction showed good output quality. In functional cardiac imaging, the proposed real-time method with VN reconstruction substantially accelerates examinations over the gold-standard, from over 10 to just 1 minute. Clinical parameters agreed on average.
Generally in MRI reconstruction, the assessment of image quality is complex, in particular for modern non-linear methods. Therefore, advanced techniques for precise evaluation of quality were subsequently demonstrated.
With two distinct methods, resolution and amplification or suppression of noise are quantified locally in each pixel of a reconstruction. Using these, local maps of resolution and noise in parallel imaging (GRAPPA), CS, U-Net and VN reconstructions were determined for MR images of the brain. In the tested images, GRAPPA delivers uniform and ideal resolution, but amplifies noise noticeably. The other methods adapt their behavior to image structure, where different levels of local blurring were observed at edges compared to homogeneous areas, and noise was suppressed except at edges. Overall, VNs were found to combine a number of advantageous properties, including a good trade-off between resolution and noise, fast reconstruction times, and high overall image quality and fidelity of the produced output. Therefore, this network architecture seems highly promising for MRI reconstruction. / Eine Beschleunigung des Bildgebungsprozesses ist heute ein wichtiges Ziel von klinischer und technischer Forschung in der Magnetresonanztomographie (MRT). Dadurch könnten Robustheit, Verfügbarkeit und Patientenkomfort erhöht, Kosten gesenkt und ganz neue Arten von Untersuchungen möglich gemacht werden. Da sich die meisten modernen Ansätze hierfür auf eine fortgeschrittene Signal- und Bildverarbeitung stützen, ist die Bildrekonstruktion ein zentraler Baustein. In diesem Bereich haben Deep Learning (DL)-basierte Methoden in der jüngeren Vergangenheit bemerkenswertes Potenzial gezeigt und eine Vielzahl an Publikationen konnte deren Nutzen in der MRT-Rekonstruktion feststellen. Allerdings besteht dabei das Risiko von subtilen und doch kritischen Fehlern. Daher ist das Ziel dieser Arbeit, die DL-basierte MRT-Rekonstruktion weiterzuentwickeln, während gleichzeitig hohe Bildqualität und Treue der erzeugten Bilder mit den gemessenen Daten gewährleistet wird. Eine Netzwerkarchitektur, die dafür besonders geeignet ist, ist das Variational Network (VN). Um den Nutzen dieser Netzwerke für nicht-kartesische Herzbildgebung zu untersuchen, beschreibt der erste Teil dieser Arbeit eine Anwendung von VNs, welche spezifisch für die Rekonstruktion von beschleunigten Akquisitionen mit spiralen Auslesetrajektorien angepasst wurden. Die vorgeschlagene Methode wird mit einer segmentierten Rekonstruktion, einem U-Net, und einem Compressed Sensing (CS)-Modell anhand von qualitativen und quantitativen Metriken verglichen. Während das U-Net schlecht abschneidet, zeigen die VN- und CS-Methoden eine gute Bildqualität. In der funktionalen Herzbildgebung beschleunigt die vorgeschlagene Echtzeit-Methode mit VN-Rekonstruktion die Aufnahme gegenüber dem Goldstandard wesentlich, von etwa zehn zu nur einer Minute. Klinische Parameter stimmen im Mittel überein.
Die Bewertung von Bildqualität in der MRT-Rekonstruktion ist im Allgemeinen komplex, vor allem für moderne, nichtlineare Methoden. Daher wurden anschließend forgeschrittene Techniken zur präsizen Analyse von Bildqualität demonstriert. Mit zwei separaten Methoden wurde einerseits die Auflösung und andererseits die Verstärkung oder Unterdrückung von Rauschen in jedem Pixel eines untersuchten Bildes lokal quantifiziert. Damit wurden lokale Karten von Auflösung und Rauschen in Rekonstruktionen durch Parallele Bildgebung (GRAPPA), CS, U-Net und VN für MR-Aufnahmen des Gehirns berechnet. In den untersuchten Bildern zeigte GRAPPA gleichmäßig eine ideale Auflösung, aber merkliche Rauschverstärkung. Die anderen Methoden verhalten sich lokal unterschiedlich je nach Struktur des untersuchten Bildes. Die gemessene lokale Unschärfe unterschied sich an den Kanten gegenüber homogenen Bildbereichen, und Rauschen wurde überall außer an Kanten unterdrückt. Insgesamt wurde für VNs eine Kombination von verschiedenen günstigen Eigenschaften festgestellt, unter anderem ein guter Kompromiss zwischen Auflösung und Rauschen, schnelle Laufzeit, und hohe Qualität und Datentreue der erzeugten Bilder. Daher erscheint diese Netzwerkarchitektur als ein äußerst vielversprechender Ansatz für MRT-Rekonstruktion.
|
353 |
Improving Instruction Fetch Rate with Code Pattern Cache for Superscalar ArchitectureBeg, Azam Muhammad 06 August 2005 (has links)
In the past, instruction fetch speeds have been improved by using cache schemes that capture the actual program flow. In this proposal, we present the architecture of a new instruction cache named code pattern cache (CPC); the cache is used with superscalar processors. CPC?s operation is based on the fundamental principles that: common programs tend to repeat their execution patterns; and efficient storage of a program flow can enhance the performance of an instruction fetch mechanism. CPC saves basic blocks (sets of instructions separated by control instructions) and their boundary addresses while the code is running. Basic blocks and their addresses are stored in two separate structures, called block pointer cache (BPC) and basic block cache (BBC), respectively. Later, if the same basic block sequence is expected to execute, it is fetched from CPC, instead of the instruction cache; this mechanism results in higher likelihood of delivering a larger number of instructions in every clock cycle. We developed single and multi-threaded simulators for TC, BC, and CPC, and used them with 10 SPECint2000 benchmarks. The simulation results demonstrated CPC?s advantage over TC and BC, in terms of trace miss rate and average trace length. Additionally, we used cache models to quantify the timing, area, and power for the three cache schemes. Using an aggregate performance index that combined the simulation and modeling results, CPC was shown to perform better than both TC and BC. During our research, each of the TC-, BC-, or CPC- configurations took 4-6 hours to simulate, so performance comparison of these caches proved to be a very time-consuming process. Neural network models (NNM?s) can be time-efficient alternatives to simulations, so we studied their feasibility to represent the cache behavior. We developed two NNM's, one to predict the trace miss rate and the other to predict the average trace length for the three caches. The NNM's modeled the caches with reasonable accuracy, and produced results in a fraction of a second.
|
354 |
Neural network control of functional neuromuscular stimulation systemsAbbas, James Joseph January 1992 (has links)
No description available.
|
355 |
Handwritten digit and script recognition using density based random vector functional link networkPark, Gwang Hoon January 1995 (has links)
No description available.
|
356 |
Digital Architecture for real-time face detection for deep video packet inspection systemsBhattarai, Smrity January 2017 (has links)
No description available.
|
357 |
Hierarchical Auto-Associative Polynomial Convolutional Neural NetworksMartell, Patrick Keith January 2017 (has links)
No description available.
|
358 |
Accelerating and Predicting Map Projections with CUDA and MLPZhang, Jiaqi 15 August 2018 (has links)
No description available.
|
359 |
ANALYSIS AND MODELING OF SPACE-TIME ORGANIZATION OF REMOTELY SENSED SOIL MOISTURECHANG, DYI-HUEY 16 January 2002 (has links)
No description available.
|
360 |
MODELING BASE ACCIDENT RATE/DENSITY USING NEURAL NETWORKSVASISHT, GAURAV January 2002 (has links)
No description available.
|
Page generated in 0.0667 seconds