• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 7
  • 7
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Détermination par approche transgénique du rôle de gènes de guidance axonale, les ephrines, dans le développement du néocortex cérébral

Depaepe, Vanessa 30 November 2005 (has links)
Les ephrines et leurs récepteurs Eph constituent une famille multigénique de facteurs de guidage cellulaire et axonal. Ces facteurs jouent un rôle-clé dans l’établissement de cartes neurales topographiques, notamment au niveau des connexions thalamocorticales, réseau neuronal majeur du cerveau des mammifères. Notre projet visait initialement à étudier l’implication des ephrines corticales dans la génèse des connexions thalamocorticales par une approche de gain de fonction. Pour ce faire, nous avons généré des souris transgéniques présentant une expression ectopique spécifique de l’ephrine-A5 dans le cortex en développement, en utilisant une technique de transgénèse d’addition par chromosome artificiel de bactéries (BAC). De façon surprenante, l’analyse de ces souris nous a révélé que les ephrines, à côté de leurs rôles classiques de facteurs de guidage, influençaient la taille du cortex cérébral en régulant l’apoptose des progéniteurs neuronaux. En effet, nous avons pu montrer que l’expression ectopique du ligand ephrine-A5 par les progéniteurs corticaux exprimant son récepteur EphA7 résultait en une déplétion précoce en progéniteurs corticaux par apoptose, et une diminution subséquente de la taille du cortex. Cette vague apoptotique est observée en l’absence de toute altération détectable de la prolifération, la différenciation et la migration neurale dans le cortex. Nous avons étayé notre étude in vivo par des expériences in vitro, qui ont montré que l’ephrine-A5 recombinante était capable d’induire rapidement la mort des progéniteurs neuronaux dissociés. Nous avons également montré que cette mort cellulaire impliquait l’activation de la caspase-3, confirmant ainsi l’effet direct des ephrines et de leurs récepteurs sur une ou plusieurs cascades apoptotiques. Par contre, la stimulation des neurones post-mitotiques corticaux par l’ephrine-A5 est accompagnée d’une activation de la caspase-3 sans mort cellulaire apparente. La signalisation ephrine/Eph induirait donc l’activation de la caspase-3 dans différents types cellulaires, sans que celle-ci ne soit systématiquement le reflet d’une mort cellulaire programmée. Parallèlement, afin d’évaluer l’importance physiologique de cette voie pro-apoptotique dépendante des ephrines, nous avons étudié des souris présentant une perte de fonction du récepteur EphA7. L’analyse de ces mutants nous a permis de mettre en évidence une diminution de l’apoptose des progéniteurs corticaux, une augmentation de la taille du cortex, ainsi qu’une hypercroissance exencéphalique de tout le cerveau antérieur dans les cas les plus extrêmes. Ces observations indiquent donc que les ephrines sont nécessaires au contrôle de la mort cellulaire programmée des progéniteurs du cortex cérébral. Nous avons également observé le même phénotype exencéphalique dans des mutants déficients en ephrines-A2, -A3 et -A5, dont l’analyse préliminaire suggère également des défauts de processus apoptotiques. Nos diverses expériences, combinant une approche par gain et perte de fonction, à la fois in vivo et in vitro, ont ainsi permis de proposer un nouveau rôle des ephrines en marge de leur implication dans la guidance axonale, à savoir un rôle dans le contrôle de la taille cérébrale par induction de l’apoptose des progéniteurs corticaux. La mise en évidence de cette nouvelle voie de signalisation pro-apoptotique pourrait avoir des implications importantes dans d’autres aspects de la biologie du développement et des cellules souches, ainsi que dans l’oncogénèse.
2

Charakterisierung enterischer, neuraler Stamm- und Vorläuferzellen aus dem humanen Darm

Hetz, Susan 09 April 2013 (has links) (PDF)
Die Stamm- und Vorläuferzellen, im Weiteren als Progenitoren bezeichnet, des humanen Darms treten seit einigen Jahrzehnten immer stärker in den Fokus der Forschung. Mit der Entdeckung von Progenitorzellen im zentralen Nervensystem in den 60er Jahren des 20. Jahrhunderts kamen auch Bestrebungen auf, im peripheren Nervensystem nach Progenitoren zu suchen. Bald darauf, zu Beginn des 21. Jahrhunderts, wurden Sie entdeckt. Diese Population von Zellen bietet eine vielversprechende Möglichkeit, aus adultem Darmgewebe Progenitorzellen zu isolieren und diese therapeutisch, bei einer Vielzahl gastroenterologischer Erkrankungen, autolog einzusetzen. Derzeit werden auch andere mögliche Stamm- und Vorläuferzellen evaluiert. Die vorliegende Arbeit liefert einen wichtigen Beitrag zur Charakterisierung humaner, enterischer, neuraler Progenitorzellen. Dies ist essentiell für eine mögliche, klinische Translation. Es gelang, die in vitro Kulturbedingungen der isolierten, humanen Zellen durch Wachstumsfaktorenzugabe und Supplemente zu verbessern und ermöglicht so auch ein besseres Verständnis der in vivo-Situation. Weiterhin wurde das sich verändernde enterische Nervensystem des humanen Darms, in verschiedenen Altersstufen, spezifisch isoliert und analysiert. Es konnten neuartige Befunde zum Verlust von neuronalen Zellen im Allgemeinen und der charakteristische Verlust von NOS-Neuronen im Speziellen erhoben werden. Erstmals beobachtet wurde die Erhöhung der Genexpression für Gliazellen im gealterten ENS. Die gewonnen Erkenntnisse wurden weiterhin in einer in vivo-Transplantationsstudie angewendet. In ein Mausmodell mit einem chemisch geschädigten Darmnerensystem wurden postnatale, humane Progenitoren eingebracht und es gelang der Beweis einer verbesserten Funktionalität durch Integration von neugebildeten Neuronen, Glia und Muskelzellen.
3

Cellular responses to Rubella virus infection of neural progenitors derived from human embryonic stem cells

Xu, Jie 18 December 2013 (has links)
Rubella virus (RUBV) is a significant human pathogen. RUBV infection takes an enormous toll due to congenital rubella syndrome (CRS), a constellation of birth defects including blindness, hearing defects and mental retardation. Little is known about RUBV-induced teratogenesis due to the absence of useful models. This research is now enabled by the availability of human embryonic stem cells (hESCs) and hESC-derived precursor cell lines. Human neural progenitor cells (hNPCs) serve as a particularly relevant model due to the symptoms and complications of CRS related to neural system development. The overarching question addressed in this dissertation is: what is the mechanism underlying the development of neurological abnormalities seen in CRS? In this context, we investigated the cellular responses of hNPCs to RUBV infection comprehensively by: 1) assessing susceptibility of the cells to RUBV infection; 2) analyzing the effect of infection on cell proliferation; and 3) examining the impact of RUBV infection on differentiation of hNPCs into neuronal and astroglial lineages . We found that hNPCs are susceptible to RUBV infection and that the percentage of infected cells closely mimics CRS in which few cells harbor virus. The virus was able to persist in culture for up to one month without significant alteration of cell morphology and stemness marker expression. In addition, RUBV infection moderately attenuated the proliferation of undifferentiated hNPCs by triggering cell cycle arrest, but not apoptosis or other cell death events commonly seen upon virus infection. This lack of apoptosis appeared to be due in part to virus-induced anti-apoptotic suppression. Interestingly, the virus only had a marginal effect on the induction of cell differentiation into both neuronal and astroglial phenotypes. In fact, RUBV infection promoted terminal differentiation of the culture due to depletion of precursor cells. With differentiation, viral replication was suppressed. We thus propose a model for RUBV-induced neurological defects in which the virus acts by depleting precursor cell pools. The results of this study provide clues for elucidating the mechanisms of RUBV teratogenicity at the cellular level and serves as a potential reference study for elucidating mechanisms of teratogenesis induced by other infectious agents.
4

Cellular responses to Rubella virus infection of neural progenitors derived from human embryonic stem cells

Xu, Jie 18 December 2013 (has links)
Rubella virus (RUBV) is a significant human pathogen. RUBV infection takes an enormous toll due to congenital rubella syndrome (CRS), a constellation of birth defects including blindness, hearing defects and mental retardation. Little is known about RUBV-induced teratogenesis due to the absence of useful models. This research is now enabled by the availability of human embryonic stem cells (hESCs) and hESC-derived precursor cell lines. Human neural progenitor cells (hNPCs) serve as a particularly relevant model due to the symptoms and complications of CRS related to neural system development. The overarching question addressed in this dissertation is: what is the mechanism underlying the development of neurological abnormalities seen in CRS? In this context, we investigated the cellular responses of hNPCs to RUBV infection comprehensively by: 1) assessing susceptibility of the cells to RUBV infection; 2) analyzing the effect of infection on cell proliferation; and 3) examining the impact of RUBV infection on differentiation of hNPCs into neuronal and astroglial lineages . We found that hNPCs are susceptible to RUBV infection and that the percentage of infected cells closely mimics CRS in which few cells harbor virus. The virus was able to persist in culture for up to one month without significant alteration of cell morphology and stemness marker expression. In addition, RUBV infection moderately attenuated the proliferation of undifferentiated hNPCs by triggering cell cycle arrest, but not apoptosis or other cell death events commonly seen upon virus infection. This lack of apoptosis appeared to be due in part to virus-induced anti-apoptotic suppression. Interestingly, the virus only had a marginal effect on the induction of cell differentiation into both neuronal and astroglial phenotypes. In fact, RUBV infection promoted terminal differentiation of the culture due to depletion of precursor cells. With differentiation, viral replication was suppressed. We thus propose a model for RUBV-induced neurological defects in which the virus acts by depleting precursor cell pools. The results of this study provide clues for elucidating the mechanisms of RUBV teratogenicity at the cellular level and serves as a potential reference study for elucidating mechanisms of teratogenesis induced by other infectious agents.
5

Analysis of the cell cycle of neural progenitors in the developing ferret neocortex

Turrero García, Miguel 06 December 2013 (has links) (PDF)
Description of the cell cycle features of neural progenitors during late stages of neurogenesis in a gyrencephalic mammal, the ferret.
6

Charakterisierung enterischer, neuraler Stamm- und Vorläuferzellen aus dem humanen Darm

Hetz, Susan 21 February 2013 (has links)
Die Stamm- und Vorläuferzellen, im Weiteren als Progenitoren bezeichnet, des humanen Darms treten seit einigen Jahrzehnten immer stärker in den Fokus der Forschung. Mit der Entdeckung von Progenitorzellen im zentralen Nervensystem in den 60er Jahren des 20. Jahrhunderts kamen auch Bestrebungen auf, im peripheren Nervensystem nach Progenitoren zu suchen. Bald darauf, zu Beginn des 21. Jahrhunderts, wurden Sie entdeckt. Diese Population von Zellen bietet eine vielversprechende Möglichkeit, aus adultem Darmgewebe Progenitorzellen zu isolieren und diese therapeutisch, bei einer Vielzahl gastroenterologischer Erkrankungen, autolog einzusetzen. Derzeit werden auch andere mögliche Stamm- und Vorläuferzellen evaluiert. Die vorliegende Arbeit liefert einen wichtigen Beitrag zur Charakterisierung humaner, enterischer, neuraler Progenitorzellen. Dies ist essentiell für eine mögliche, klinische Translation. Es gelang, die in vitro Kulturbedingungen der isolierten, humanen Zellen durch Wachstumsfaktorenzugabe und Supplemente zu verbessern und ermöglicht so auch ein besseres Verständnis der in vivo-Situation. Weiterhin wurde das sich verändernde enterische Nervensystem des humanen Darms, in verschiedenen Altersstufen, spezifisch isoliert und analysiert. Es konnten neuartige Befunde zum Verlust von neuronalen Zellen im Allgemeinen und der charakteristische Verlust von NOS-Neuronen im Speziellen erhoben werden. Erstmals beobachtet wurde die Erhöhung der Genexpression für Gliazellen im gealterten ENS. Die gewonnen Erkenntnisse wurden weiterhin in einer in vivo-Transplantationsstudie angewendet. In ein Mausmodell mit einem chemisch geschädigten Darmnerensystem wurden postnatale, humane Progenitoren eingebracht und es gelang der Beweis einer verbesserten Funktionalität durch Integration von neugebildeten Neuronen, Glia und Muskelzellen.
7

Conical expansion of the outer subventricular zone and the role of neocortical folding in evolution and development

Huttner, Wieland B., Lewitus, Eric, Kelava, Iva 27 October 2015 (has links) (PDF)
There is a basic rule to mammalian neocortical expansion: as it expands, so does it fold. The degree to which it folds, however, cannot strictly be attributed to its expansion. Across species, cortical volume does not keep pace with cortical surface area, but rather folds appear more rapidly than expected. As a result, larger brains quickly become disproportionately more convoluted than smaller brains. Both the absence (lissencephaly) and presence (gyrencephaly) of cortical folds is observed in all mammalian orders and, while there is likely some phylogenetic signature to the evolutionary appearance of gyri and sulci, there are undoubtedly universal trends to the acquisition of folds in an expanding neocortex. Whether these trends are governed by conical expansion of neocortical germinal zones, the distribution of cortical connectivity, or a combination of growth- and connectivity-driven forces remains an open question. But the importance of cortical folding for evolution of the uniquely mammalian neocortex, as well as for the incidence of neuropathologies in humans, is undisputed. In this hypothesis and theory article, we will summarize the development of cortical folds in the neocortex, consider the relative influence of growth- vs. connectivity-driven forces for the acquisition of cortical folds between and within species, assess the genetic, cell-biological, and mechanistic implications for neocortical expansion, and discuss the significance of these implications for human evolution, development, and disease. We will argue that evolutionary increases in the density of neuron production, achieved via maintenance of a basal proliferative niche in the neocortical germinal zones, drive the conical migration of neurons toward the cortical surface and ultimately lead to the establishment of cortical folds in large-brained mammal species.
8

Caractérisation d'une nouvelle famille de protéines régulatrices des réseaux périnucléaires d'actine, les Refilines. Interaction avec la Filamine A et implication dans le remodelage du noyau cellulaire / Characterisation of Refilin proteins that regulate perinuclear actin structures. Interaction with FilaminA and role in nuclear remodelling.

Gay, Olivia 19 September 2011 (has links)
Le cytosquelette d'actine est une structure dynamique capitale pour la cellule, qui intervient dans les processus de signalisation et génère des forces mécaniques pour compléter des fonctions aussi diverses que l'adhésion, la migration, la division ou la différenciation. Les protéines qui régulent cette structure sont capables de moduler ces fonctions. J'ai identifié une nouvelle famille de protéines régulatrices de l'actine, les protéines Refilines (RefilineA et RefilineB), dont l'expression est corrélée avec l'engagement des cellules dans des programmes de différenciation. La RefilineA est induite lors de la différenciation des cellules précurseurs neurales multipotentes en cellules progénitrices gliales. La RefilineB est stabilisée dans les cellules épithéliales lors de la transition épithélio-mésenchymateuse (TEM) induite par le TGF-β. Dans ces cellules, les Refilines agissent en se complexant à la FilamineA, une protéine qui se lie aux filaments d'actine et forme le maillage. Des syndromes génétiques de mutations sur le gène de la FilamineA entrainent d'importants défauts développementaux, cependant la fonction précise de la protéine reste à ce jour obscure. Le complexe Refiline/FilamineA induit la formation de câbles d'actine et génère également une nouvelle structure d'actine périnucléaire appelée coiffe d'actine (« actin cap ») ou « ligne TAN» qui s'ancre à l'enveloppe nucléaire pour réguler les mouvements et la morphologie du noyau. Les Refilines sont les seules protéines identifiées à ce jour capables de catalyser la formation de structures périnucléaires d'actine. Ces résultats ouvrent donc de nouvelles perspectives pour appréhender les fonctions de la FilamineA ainsi que la biologie et les fonctions des structures périnucléaires d'actine. / The actin cytoskeleton is a highly dynamic structure involved in cell signaling and that creates mechanical force for the completion of diverse functions such as adhesion, migration, division or differentiation. Proteins that regulate this structure can modulate its function. We identified a new protein family that regulates the actin cytoskeleton, Refilin proteins (RefilinA and RefilinB), and whose expression correlates with differentiation switches. RefilinA is induced during differentiation of neural multipotent precursors into glial progenitors, while RefilinB is stabilized in epithelial cells during epithelial-mesenchymal transition (EMT) induced by TGF-β. In cells, Refilins interact with FilaminA, a protein that binds actin filaments to organize them into a network. Genetic syndromes where the FilaminA gene is mutated lead to important developmental defects, The Refilin/FilaminA complex generates actin cables as well as a new perinuclear structure called « actin cap » or «TAN line» that interacts with the nuclear envelope to regulate nuclear movement and shape. Refilin proteins are the only proteins identified so far that induce the formation of perinuclear actin structures. These results open up new perspective for the understanding of FilaminA's function as well as for the biology and functions of perinuclear actin structures.
9

Modeling sporadic Alzheimer's disease using induced pluripotent stem cells

McLaughlin, Heather Ward 01 January 2015 (has links)
Despite being the leading cause of neurodegeneration and dementia in the aging brain, the cause of Alzheimer's disease (AD) remains unknown in most patients. The terminal pathological hallmarks of abnormal protein aggregation and neuronal cell death are well-known from the post-mortem brain tissue of Alzheimer's disease patients, but research into the earliest stages of disease development is hindered by limited model systems. In this thesis, an in vitro human neuronal system was derived from induced pluripotent stem (iPS) cell lines reprogrammed from dermal fibroblasts of AD patients and age-matched controls. This allows us to investigate the cellular mechanisms of AD neurodegeneration in the human neurons of sporadic AD (SAD) patients, whose development of the disease cannot be explained by our current understanding of AD. We show that neural progenitors and neurons derived from SAD patients show an unexpected expression profile of enhanced neuronal gene expression resulting in premature differentiation in the SAD neuronal cells. This difference is accompanied by the decreased binding of the repressor element 1-silencing transcription/neuron-restrictive silencer factor (REST/NRSF) transcriptional inhibitor of neuronal differentiation in the SAD neuronal cells. The SAD neuronal cells also have increased production of \(amyloid-\beta\) and higher levels of tau protein, the main components of the plaques and tangles in the AD brain.
10

Conical expansion of the outer subventricular zone and the role of neocortical folding in evolution and development

Huttner, Wieland B., Lewitus, Eric, Kelava, Iva 27 October 2015 (has links)
There is a basic rule to mammalian neocortical expansion: as it expands, so does it fold. The degree to which it folds, however, cannot strictly be attributed to its expansion. Across species, cortical volume does not keep pace with cortical surface area, but rather folds appear more rapidly than expected. As a result, larger brains quickly become disproportionately more convoluted than smaller brains. Both the absence (lissencephaly) and presence (gyrencephaly) of cortical folds is observed in all mammalian orders and, while there is likely some phylogenetic signature to the evolutionary appearance of gyri and sulci, there are undoubtedly universal trends to the acquisition of folds in an expanding neocortex. Whether these trends are governed by conical expansion of neocortical germinal zones, the distribution of cortical connectivity, or a combination of growth- and connectivity-driven forces remains an open question. But the importance of cortical folding for evolution of the uniquely mammalian neocortex, as well as for the incidence of neuropathologies in humans, is undisputed. In this hypothesis and theory article, we will summarize the development of cortical folds in the neocortex, consider the relative influence of growth- vs. connectivity-driven forces for the acquisition of cortical folds between and within species, assess the genetic, cell-biological, and mechanistic implications for neocortical expansion, and discuss the significance of these implications for human evolution, development, and disease. We will argue that evolutionary increases in the density of neuron production, achieved via maintenance of a basal proliferative niche in the neocortical germinal zones, drive the conical migration of neurons toward the cortical surface and ultimately lead to the establishment of cortical folds in large-brained mammal species.

Page generated in 0.0793 seconds