61 |
Isolation and effects of citrus limonoids on cytochrome p450 inhibition, apoptotic induction and cytotoxicity on human cancer cells.Poulose, Shibu M. 25 April 2007 (has links)
This dissertation illustrates an efficient purification method for citrus
limonoids and flavonoids, while examining their effects on cytochrome P450
inhibition and apoptotic induction on human neuroblastoma (SH-SY5Y) and
colonic adenocarcinoma (Caco-2) cells. The first study developed a bulk
purification method for limonoids, from seeds and molasses of citrus fruits, using
a combination of chromatographic techniques. This also resulted in an efficient
purification method for naringin and hesperidin from citrus byproducts.
The second study investigated the inhibitory effects of purified limonoids
and flavonoids on the enzymatic activities of different isoforms of human
cytochrome P450. O-Dealkylase and hydroxylase activities of CYP1A2,
CYP1B1, CYP3A4 and CYP19, using specific substrates such as
ethoxyresorufin (ethoxyresorufin O-dealkylase, EROD), methoxyresorufin
(methoxyresorufin O-dealkylase, MROD), and dibenzylfluorescein (DBF), were found to be significantly (P < 0.001) reduced at micromolar levels. A kinetic
analysis showed competitive and non-competitive modes of inhibition by
limonoids, on CYP19 hydroxylase activity. The results corroborate the active role
of limonoids in the redox cycling mechanisms.
The third study examined the antioxidant and apoptotic inducing ability of
limonoid glucosides on human neuroblastoma cells. Four limonoid glucosides,
LG (17beta-D glucopyranoside limonin), OG (obacunone 17beta-D glucopyranoside),
NAG (nomilinic acid 17beta-D glucopyranoside), and DNAG (deacetylnomilinic acid
17beta-D glucopyranoside), have shown superoxide scavenging at millimolar
levels. Micromolar amounts of LG and OG induced rapid necrosis of SH-SY5Y
cells. Cytotoxicity was correlated (P = 0.046) to a concentration and timedependent
increase in caspase 3/7 activity. Analyses of DNA content during the
S phase of the cell cycle indicated reductions of 86.6% for LG and 82.3% for OG
as compared to untreated. The results validate the antineoplastic distinctiveness
of limonoid glucosides.
In the fourth study, cytotoxic effects of limonoid aglycones and glucosides
were assessed on human SH-SY5Y neuroblastoma and colon carcinoma
(CaCo-2) cell lines and compared with the non-cancerous Chinese hamster
ovary (CHO) cells. Significant (P < 0.001) cytotoxic effects were observed only
on cancerous cells, over 24 to 36 h. The study revealed a marked increase in
the DNA content of aneuploidic cells, which results in cell cycle arrest. The
results confirm that glycosides are the most active apoptotic inducing form.
|
62 |
The cytotoxic effect of arsenic trioxide on human neuroblastoma cell lines and its relationship to MYCN gene status /Tong, Pak-ho. January 2009 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2009. / Includes bibliographical references (leaves 153-173). Also available online.
|
63 |
The common basis of sympathetic nervous system and neuroblastoma developmentShi, Huilin. January 2009 (has links)
Thesis (Ph. D.)--University of Toledo, 2009. / "In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Sciences (Cancer Biology)." Title at OhioLINK ETD site: Investigation of common bases of sympathetic nervous system and neuroblastoma development. Title from title page of PDF document. Includes bibliographical references (p. 72-75, 119-125, 152-192).
|
64 |
Tumor suppressive functions of Krüppel-like factor 4 (KLF 4) in neuroblastomaTsoi, Lai-shan, 蔡麗珊 January 2011 (has links)
Neuroblastoma is a childhood solid tumor of a unique propensity to either regress
spontaneously or grow relentlessly. Emerging evidence indicated that neuroblastoma
contains heterogeneous populations of cells, and commitment of these cells to
neuronal lineage may result in aggressive progression in patients, whereas to
fibromuscular lineage may give a favorable outcome. However, mechanism(s)
controlling the lineage commitment of neuroblastoma cells remains to be identified.
Our preliminary data suggested that Kr?ppel-Like Factor 4 (KLF4) might promote
neuroblastoma regression. KLF4 is a transcription factor regulating a variety of
cellular functions, including proliferation and cell cycle progression. Recent studies
have demonstrated that KLF4 may act as both tumor suppressor and oncogene in a
cell-context dependent manner. Importantly, our preliminary data showed that low
KLF4 expression is highly associated with poor clinical outcomes of the
neuroblastoma patients. In addition, we found that overexpression of KLF4
suppresses neuroblastoma cell growth accompanied with loss of tumorigenicity.
Morphologically, KLF4 overexpressing cells changed their morphologies to become
epithelial-like, strongly substrate-adherent and expressing smooth muscle marker.
Therefore, we hypothesized that KLF4 exerts its effects through two ways, it may (i)
function to inhibit cell growth and reduce tumorigenicity; and (ii) promote
differentiation of the neuroblastoma cells to the non-tumorigenic, fibromuscular-like
cells.
RT-PCR data revealed the differential expression of KLF4 in 11 neuroblastoma cell
lines. In particular, a modest expression was found in Be(2)C, a cell line which was
formerly demonstrated to differentiate and form tumor in mice xenograft assay. It
was therefore chosen as the study model.
To assess the effects of KLF4 knockdown on tumor growth, stable knockdown clones
from Be(2)C cells were established by lentiviral transduction of KLF4-targeting
shRNA. In parallel, clones that stably expressed non-target shRNA were used as
controls. After the transduction, two stable knockdown clones showing significant
KLF4 downregulation were isolated from single colony (monoclonal stable clones)
and a pool of cells (polyclonal stable clones) respectively. The cell proliferation and
growth rate of the stable clones were then measured by 5-bromo-2’-deoxyuridine
(BrdU) proliferation assay and growth curve assay. The results have indicated that
both monoclonal and polyclonal stable KLF4 knockdown clones grow faster than the
control clones. In order to examine the tumorigenicity in vivo, the stable clones were
xenotransplanted to severe combined immunodeficient mice. The stable KLF4
knockdown clones showed a significant higher growth rate and formed a larger
tumor. The stable clones were also treated with BrdU for four weeks for
differentiation towards fibromuscular lineage. As anticipated, the control clones
showed fibromuscular features, like more flattened and epithelial-like morphology. In
contrast, the stable KLF4 knockdown clones failed to present the fibromuscular
features after treatment. In addition, immunocytochemistry staining of SMA and
quantitative analysis of the immunocytochemistry further confirmed that only the
control clones showed higher SMA expression after BrdU treatment, while there is no
change in the SMA expression in the stable KLF4 knockdown clones. These results
demonstrated that KLF4 functioned by inhibiting neuroblastoma cell proliferation
and growth, reducing the tumorigenicity, and it was required for fibromuscular
differentiation. / published_or_final_version / Surgery / Master / Master of Philosophy
|
65 |
Mechanistic Implications and Characterization of Anaplastic Lymphoma Kinase (ALK) mutations in NeuroblastomaChand, Damini January 2015 (has links)
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase that was first reported as a fusion partner of nucleophosmin in Anaplastic large cell lymphoma in 1994. ALK is involved in myriad of cancers including neuroblastoma which is the most common extracranial solid tumor affecting young children. It arises in the neural crest cells of sympathetic nervous system origin and is responsible for 12% of all childhood cancer deaths. Several point mutations in ALK have been described in both familial and sporadic neuroblastoma. With the aim to understand the role of ALK in neuroblastoma further, we investigated the point mutations in ALK reported in patients. Using cell culture based methods and Drosophila as a model organism; we first characterized these mutations under three broad categories: 1) Ligand independent mutations that were constitutively active, 2) Kinase dead mutation and 3) Ligand dependent mutations that behaved as inducible wild type. Further, to understand the activation mechanism of ALK, we constructed mutations that could potentially alter ALK’s conformation based on the available crystal structure. From the data generated, we were able to provide a new perspective to the activation of full length ALK receptor. This was more in line with activation mechanism of insulin receptor and different from that suggested for ALK fusion protein. From a clinical point of view, all the mutations in the study were blocked to different degrees using the ALK inhibitor, crizotinib. Lastly, we identified potential downstream targets of ALK using phosphoproteomics. From the various targets identified, we focused on STAT3 and confirmed its role as a mediator in ALK initiated MYCN transcription. We showed that STAT3 inhibition led to reduction of MYCN levels and thereby identifying it as a potential therapeutic target in neuroblastoma. Overall, our study highlights clinical relevance of ALK mutations in neuroblastoma and from a basic biology viewpoint; it reveals important mechanistic insight into receptor activation.
|
66 |
The cytotoxic effect of arsenic trioxide on human neuroblastoma cell lines and its relationship to MYCN gene statusTong, Pak-ho. January 2009 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2009. / Includes bibliographical references (leaves 153-173). Also available in print.
|
67 |
Busca de novos alvos terapêuticos no tratamento de neuroblastoma utilizando ferramentas de biologia de sistemasAlbanus, Ricardo D’Oliveira January 2014 (has links)
Neuroblastoma é um tumor do sistema nervoso periférico e uma das principais causas de mortalidade infantil por câncer no Brasil e no mundo. A característica marcante desses tumores é sua heterogeneidade clínica – as apresentações variam desde formas benignas e tratáveis até variantes extremamente agressivas, que levam o paciente a óbito em poucos meses. A fim de determinar as melhores estratégias para o tratamento desse câncer, um grande número de pesquisadores tem procurado por novos biomarcadores e alvos terapêuticos. Atualmente, o melhor marcador biológico para a progressão de neuroblastoma é a amplificação do gene MYCN, que ocorre na maioria dos casos mais agressivos. Entretanto, esse marcador não é capaz de discriminar entre todos os tipos de pacientes, demonstrando a necessidade de encontrarmos outros marcadores. Neste trabalho, reconstruímos a rede de regulação gênica de neuroblastoma utilizando ferramentas de bioinformática e biologia de sistemas a fim de buscar novos biomarcadores e alvos terapêuticos para esta doença. Através dessa rede, analisamos uma assinatura de genes diferentemente expressos em metástases agressivas, buscando fatores de transcrição que pudessem estar envolvidos na progressão tumoral. Através dessa análise, observamos que MAX é um dos reguladores mestres do processo, e variações em sua expressão estavam correlacionadas com o desfecho de pacientes, sugerindo seu potencial como biomarcador. Além disso, também observamos o aumento do conteúdo de MAX em células de linhagem de neuroblastoma humano durante um protocolo de diferenciação experimental, sugerindo que essa proteína tem um papel muito mais central no controle do balanço entre proliferação e diferenciação do que previamente descrito. / Neuroblastoma is a peripheral nervous system tumor and one of the main causes of children cancer mortality in Brazil and in the rest of the world. The hallmark of these tumors is their clinical heterogeneity – presentations vary from benign and treatable to extremely aggressive variants, the latter leading the patient to death in just a few months. In order to come up with the best strategies for treatment and management of this cancer, a great number of researchers have been searching for novel biomarkers and therapeutic targets. To this date, the best neuroblastoma biomarker is the amplification of MYCN oncogene, which occurs in the majority of aggressive cases. However, this biomarker alone does not suffice to discriminate among all patients types, illustrating the need for finding other biomarkers. In this work, we reverse engineered the neuroblastoma gene regulatory network using systems biology and bioinformatics tools in order to find novel biomarkers and therapeutic targets. Using this network, we analyzed an aggressive metastasis gene signature to find transcription factors that could be involved in tumor progression. Through this analysis, we observed that MAX was a master regulator of this process, and that changes in its expression were associated with patient survival, suggesting its role as potential biomarker. Additionally, we observed that MAX content was increased in human neuroblastoma cell lines undergoing experimental differentiation. These results suggest that this protein has a much more central role in regulating the balance between proliferation and differentiation than previously described.
|
68 |
Busca de novos alvos terapêuticos no tratamento de neuroblastoma utilizando ferramentas de biologia de sistemasAlbanus, Ricardo D’Oliveira January 2014 (has links)
Neuroblastoma é um tumor do sistema nervoso periférico e uma das principais causas de mortalidade infantil por câncer no Brasil e no mundo. A característica marcante desses tumores é sua heterogeneidade clínica – as apresentações variam desde formas benignas e tratáveis até variantes extremamente agressivas, que levam o paciente a óbito em poucos meses. A fim de determinar as melhores estratégias para o tratamento desse câncer, um grande número de pesquisadores tem procurado por novos biomarcadores e alvos terapêuticos. Atualmente, o melhor marcador biológico para a progressão de neuroblastoma é a amplificação do gene MYCN, que ocorre na maioria dos casos mais agressivos. Entretanto, esse marcador não é capaz de discriminar entre todos os tipos de pacientes, demonstrando a necessidade de encontrarmos outros marcadores. Neste trabalho, reconstruímos a rede de regulação gênica de neuroblastoma utilizando ferramentas de bioinformática e biologia de sistemas a fim de buscar novos biomarcadores e alvos terapêuticos para esta doença. Através dessa rede, analisamos uma assinatura de genes diferentemente expressos em metástases agressivas, buscando fatores de transcrição que pudessem estar envolvidos na progressão tumoral. Através dessa análise, observamos que MAX é um dos reguladores mestres do processo, e variações em sua expressão estavam correlacionadas com o desfecho de pacientes, sugerindo seu potencial como biomarcador. Além disso, também observamos o aumento do conteúdo de MAX em células de linhagem de neuroblastoma humano durante um protocolo de diferenciação experimental, sugerindo que essa proteína tem um papel muito mais central no controle do balanço entre proliferação e diferenciação do que previamente descrito. / Neuroblastoma is a peripheral nervous system tumor and one of the main causes of children cancer mortality in Brazil and in the rest of the world. The hallmark of these tumors is their clinical heterogeneity – presentations vary from benign and treatable to extremely aggressive variants, the latter leading the patient to death in just a few months. In order to come up with the best strategies for treatment and management of this cancer, a great number of researchers have been searching for novel biomarkers and therapeutic targets. To this date, the best neuroblastoma biomarker is the amplification of MYCN oncogene, which occurs in the majority of aggressive cases. However, this biomarker alone does not suffice to discriminate among all patients types, illustrating the need for finding other biomarkers. In this work, we reverse engineered the neuroblastoma gene regulatory network using systems biology and bioinformatics tools in order to find novel biomarkers and therapeutic targets. Using this network, we analyzed an aggressive metastasis gene signature to find transcription factors that could be involved in tumor progression. Through this analysis, we observed that MAX was a master regulator of this process, and that changes in its expression were associated with patient survival, suggesting its role as potential biomarker. Additionally, we observed that MAX content was increased in human neuroblastoma cell lines undergoing experimental differentiation. These results suggest that this protein has a much more central role in regulating the balance between proliferation and differentiation than previously described.
|
69 |
Der ALK-Rezeptor in zellulären Modellen des humanen Neuroblastomkrebses: Aktivierung und Signalisierung / The ALK receptor in cellular models of human neuroblastoma cancer: activation and signalingAksak, Laura Jacqueline 31 January 2018 (has links)
No description available.
|
70 |
Busca de novos alvos terapêuticos no tratamento de neuroblastoma utilizando ferramentas de biologia de sistemasAlbanus, Ricardo D’Oliveira January 2014 (has links)
Neuroblastoma é um tumor do sistema nervoso periférico e uma das principais causas de mortalidade infantil por câncer no Brasil e no mundo. A característica marcante desses tumores é sua heterogeneidade clínica – as apresentações variam desde formas benignas e tratáveis até variantes extremamente agressivas, que levam o paciente a óbito em poucos meses. A fim de determinar as melhores estratégias para o tratamento desse câncer, um grande número de pesquisadores tem procurado por novos biomarcadores e alvos terapêuticos. Atualmente, o melhor marcador biológico para a progressão de neuroblastoma é a amplificação do gene MYCN, que ocorre na maioria dos casos mais agressivos. Entretanto, esse marcador não é capaz de discriminar entre todos os tipos de pacientes, demonstrando a necessidade de encontrarmos outros marcadores. Neste trabalho, reconstruímos a rede de regulação gênica de neuroblastoma utilizando ferramentas de bioinformática e biologia de sistemas a fim de buscar novos biomarcadores e alvos terapêuticos para esta doença. Através dessa rede, analisamos uma assinatura de genes diferentemente expressos em metástases agressivas, buscando fatores de transcrição que pudessem estar envolvidos na progressão tumoral. Através dessa análise, observamos que MAX é um dos reguladores mestres do processo, e variações em sua expressão estavam correlacionadas com o desfecho de pacientes, sugerindo seu potencial como biomarcador. Além disso, também observamos o aumento do conteúdo de MAX em células de linhagem de neuroblastoma humano durante um protocolo de diferenciação experimental, sugerindo que essa proteína tem um papel muito mais central no controle do balanço entre proliferação e diferenciação do que previamente descrito. / Neuroblastoma is a peripheral nervous system tumor and one of the main causes of children cancer mortality in Brazil and in the rest of the world. The hallmark of these tumors is their clinical heterogeneity – presentations vary from benign and treatable to extremely aggressive variants, the latter leading the patient to death in just a few months. In order to come up with the best strategies for treatment and management of this cancer, a great number of researchers have been searching for novel biomarkers and therapeutic targets. To this date, the best neuroblastoma biomarker is the amplification of MYCN oncogene, which occurs in the majority of aggressive cases. However, this biomarker alone does not suffice to discriminate among all patients types, illustrating the need for finding other biomarkers. In this work, we reverse engineered the neuroblastoma gene regulatory network using systems biology and bioinformatics tools in order to find novel biomarkers and therapeutic targets. Using this network, we analyzed an aggressive metastasis gene signature to find transcription factors that could be involved in tumor progression. Through this analysis, we observed that MAX was a master regulator of this process, and that changes in its expression were associated with patient survival, suggesting its role as potential biomarker. Additionally, we observed that MAX content was increased in human neuroblastoma cell lines undergoing experimental differentiation. These results suggest that this protein has a much more central role in regulating the balance between proliferation and differentiation than previously described.
|
Page generated in 0.0665 seconds