• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 387
  • 221
  • 103
  • 37
  • 28
  • 26
  • 20
  • 11
  • 10
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 1000
  • 177
  • 125
  • 124
  • 110
  • 103
  • 80
  • 70
  • 69
  • 68
  • 68
  • 64
  • 63
  • 60
  • 59
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

In vitro investigation of trans SNARE complexes arrested between artificial membranes

Yavuz, Halenur 21 November 2014 (has links)
No description available.
162

Determining the roles of Nel in the development of the avian visual system

Kuan, Soh Leh January 2012 (has links)
Cell-cell signalling molecules play important roles in neural development. In response to extracellular signals, neuronal progenitor cells proliferate, differentiate, and form a neuronal network. In the vertebrate retina, retinal ganglion cells (RGCs) are the first neurons produced during development and are the only neurons that send projections to the brain. However, the molecular mechanisms for RGC development have not been fully understood. In this study, I have investigated the expression and functions of Nel (Neural Epidermal Growth Factor Like), an extracellular glycoprotein that contains chordin-like domains and epidermal growth factor-like domains, in the development of the chick RGCs and retinotectal projection. I found that on embryonic days (E) 2-3.5, Nel was expressed in the presumptive retinal pigment epithelium of the developing eye. Correspondingly, Nel-binding activity (Nel receptor activity) was detected in the retinal pigment epithelium and also the progenitor layer of the neural retina. At the early stages during RGC formation, Nel overexpression increased the total number of RGCs and accelerated the progression of RGC differentiation wave. Conversely, Nel expression knockdown decreased the total number of RGCs and slowed down the progression of RGC differentiation wave. At later stages (E3-E18), expression of Nel in the retina was in the retinal pigment epithelium and the RGC layer, whereas receptor activity for Nel was localized in the retinal pigment epithelium and the RGC axons. In vivo, Nel overexpression in the developing retina induced the inhibition of RGC axons and thus disrupting the intraretinal RGC axon projection. These results suggest that Nel can positively regulate the production of RGCs at the early stages during retinal development, and at the later stages, Nel can function as an inhibitory guidance cue in vivo for RGC axons.
163

Initiating Complement-Dependent Synaptic Refinement: Mechanisms of Neuronal C1q Regulation

Bialas, Allison Marilyn 07 June 2014 (has links)
Immune molecules, including complement proteins, C1q and C3, have emerged as critical mediators of synaptic refinement and plasticity. Complement proteins localize to synapses and refine the developing retinogeniculate system via C3-dependent microglial phagocytosis of synapses. Retinal ganglion cells (RGCs) express C1q, the initiating protein of the classical complement cascade, during retinogeniculate refinement; however, the signals controlling C1q expression and function remain elusive. RGCs grown in the presence of astrocytes significantly upregulated C1q compared to controls, implicating an astrocyte-derived factor in neuronal C1q expression. A major goal of my dissertation research was to identify the signals that regulate C1q expression and function in the developing visual system. In this study, I have identified transforming growth factor beta \((TGF-\beta)\), an astrocyte-secreted cytokine, as both necessary and sufficient for C1q expression in RGCs through an activity-dependent mechanism. Specific disruption of retinal \(TGF-\beta\) signaling resulted in a significant reduction in the deposition of C1q and downstream C3 at retinogeniculate synapses and significant synaptic refinement defects in the retinogeniculate system. Microglia engulfment of RGC inputs in the lateral geniculate nucleus (LGN) was also significantly reduced in retinal \(TGF\beta\)RII KOs, phenocopying the engulfment defects observed in C1q KOs, C3 KOs, and CR3 KOs. Interestingly, in C1q KOs and retinal \(TGF\beta\)RII KOs, microglia also failed to preferentially engulf less active inputs when retinal activity was manipulated, suggesting that retinal activity and \(TGF-\beta\) signaling cooperatively regulate complement mediated synaptic refinement. In support of this hypothesis, blocking spontaneous activity in RGC cultures significantly reduced C1q upregulation by \(TGF-\beta\). Moreover, manipulating spontaneous retinal activity in vivo modulated C1q expression levels in RGCs and C1q deposition in the LGN. Together these findings support a model in which retinal activity and \(TGF-\beta\) signaling control expression and local release of C1q in the LGN to regulate microglia-mediated, complement-dependent synaptic pruning. These results provide mechanistic insight into synaptic refinement and, potentially, pathological synapse loss which occurs in the early stages of neurodegenerative diseases concurrently with aberrant complement expression and reactive gliosis.
164

Roles of the HECT-Type Ubiquitin E3 Ligases of the Nedd4 and WWP Subfamilies in Neuronal Development

Hsia, Hung-En 20 October 2014 (has links)
No description available.
165

Molecular characterization of Ptf1a activity during Xenopus embryogenesis

Hedderich, Marie Charlotte 18 October 2012 (has links)
Für die Bildung eines funktionalen Nervensystems in Vertebraten ist ein Gleichgewicht zwischen inhibitorischen und exzitatorischen Neuronen essentiell. Ein Schlüsselfaktor in der Regulation dieses Gleichgewichts ist der bHLH Transkriptionsfaktor Ptf1a, welcher GABAerge inhibitorische Neurone in der Retina, dem Hinterhirn und im Rückenmark von Vertebraten spezifiziert, zugleich jedoch glutamaterge exzitatorische Neurone unterdrückt. In diesem Zusammenhang benötigt die Aktivität von Ptf1a die Bildung eines trimeren Komplexes, in welchem Ptf1a an ein allgemein exprimiertes E-Protein und an ein Mitglied der Su(H)-Familie bindet. Ptf1a fördert ebenfalls generelle neuronale Differenzierung in X. laevis Embryonen und Explantaten, was darauf hinweist, dass Ptf1a proneurale Aktivität besitzt. In dieser Doktorarbeit wurde die Rolle von Ptf1a im Zusammenhang mit genereller Neurogenese (frühe Funktion) und neuronaler Subtypen-Spezifizierung (späte Funktion) untersucht. Durch eine zeitliche Expressionsanalyse bekannter Gene konnte gezeigt werden, dass Ptf1a durch die Aktivierung von nachgeschalteten Genen, ähnlich dem proneuralen Transkriptionsfaktor Ngn2, in animalen Kappen (naives Ektoderm) zu frühen Zeitpunkten Neurogenese induziert. In späteren Stadien hingegen aktivierte Ptf1a die Expression von Markergenen, die GABAerge Neurone kennzeichnen, während neuronale glutamaterge Markergene von Ngn2 induziert wurden. Eine mutierte Version von Ptf1a (Ptf1aW224A/W242A), welche nicht in der Lage ist, mit dem Kofaktor Su(H) zu interagieren, behielt die Fähigkeit, generelle Neurogenese zu induzieren, nicht aber GABAerge Markergene zu aktivieren. Diese Ergebnisse lassen darauf schließen, dass Ptf1a in der Entwicklung des Nervensystems kontext-spezifische Transkriptionskomplexe bildet: einen Su(H)-unabhängigen Komplex zur Aktivierung genereller Neuorgenese und einen Su(H)-abhängigen Komplex zur Spezifizierung GABAerger Neurone. Da die Zielgene von Ptf1a in der Entwicklung des Nervensystems nicht genau bestimmt sind, wurden zwei unabhängige Transkriptom-Analysen durchgeführt, um das Ptf1a nachgeschaltete genetische Netzwerk aufzuzeigen. In diesen Untersuchungen wurde eine zeitliche Analyse von Genen durchgeführt, die durch wildtyp Ptf1a, Ptf1aW224A/W242A und Ngn2 in X. laevis animalen Kappen aktiviert werden; direkte Zielgene für Ptf1a und Ptf1a/Su(H) wurden bestimmt durch die Aktivierung dieser Transkriptionsfaktoren unter Vorhandensein eines Proteinsyntheseinhibitors (CHX). Durch dieses Vorgehen konnten viele mutmaßlich neue frühe und späte Zielgene von Ptf1a identifiziert werden. Eine weitere Analyse dieser nachgeschalteten Zielgene dürfte darüber Aufschluss geben, wie Ptf1a generelle Neurogenese und neuronale Subtypen-Spezifizierung reguliert.
166

Generación de una malla de ondulaciones geoidales por el método GPS/nivelación y redes neuronales artificiales a partir de datos dispersos

Carrión Sánchez, José Luis 22 August 2013 (has links)
En este trabajo se presenta un método de interpolación basado en el entrenamiento de una Red Neuronal Artificial del tipo Multicapa (RNAM) con datos obtenidos en un área del Ecuador Continental, con el objetivo de obtener valores de ondulación geoidal. Los resultados obtenidos mediante la interpolación con la RNAM presentan errores menores a 15 centímetros.
167

Investigation of Molecular and Cellular Mechanism of Myelin – Induced Axonal Degeneration

Dedeagac, Asli 22 November 2013 (has links)
Axon degeneration is a selective elimination of axons, which plays a crucial role during development, injury, and maintenance of neuronal connections. The p75 neurotrophin receptor (NTR) is responsible for maintaining the specificity of neuronal connectivity in parts of the adult brain by inducing the degeneration of aberrantly growing axons into myelinated tracts. The objective of this study is to identify and characterize the signaling pathways used by p75NTR to mediate axon degeneration on myelin. Since p75NTR signals via JNK/Bax/caspase pathway to cause apoptosis, I asked whether this pathway might also be involved in axon degeneration. I observed that inhibition of JNK or Bax significantly decreased myelin-induced axonal degeneration, while depolarization of axons with potassium chloride prevented axonal degeneration on myelin. Together, these results suggest that p75NTR-dependent, myelin-mediated axon degeneration occurs via JNK/BAX signaling, and that neural activity is important for the prevention of myelin-induced axonal degeneration.
168

MicroRNA Dysregulation Following Spinal Cord Contusion: Implications for Neural Plasticity and Neuropathic Pain

Strickland, Eric 16 December 2013 (has links)
Spinal cord injury (SCI) results in a number of devastating consequences, including loss of motor function, paralysis, and neuropathic pain. Concomitant peripheral tissue injury below the lesion site can result in uncontrollable nociception that sensitizes spinal neurons and promotes chronic pain. Additionally, drugs like morphine, though critical for pain management, elicit pro-inflammatory effects that exacerbate chronic pain symptoms. Currently, there is a lack of effective therapeutic mechanisms to promote regeneration at the lesion site, and a limited understanding of regulatory mechanisms that can be utilized to therapeutically manipulate spinal cord plasticity. MicroRNAs (miRNAs) constitute novel targets for therapeutic intervention to both promote repair and regeneration, and mitigate maladaptive plasticity that leads to neuropathic pain. Microarray and qRT-PCR comparisons of contused and sham rat spinal cords at 4 and 14 days following SCI indicated that a total of 35 miRNAs were dysregulated, with miR1, miR124, and miR129 exhibiting significant down-regulation after SCI, and both miR21 and miR146a being transiently induced. Localized expression of miRNAs and cellular markers indicated that changes in miRNA regulation favor the emergence of neural stem cell niches and reversion of surviving neurons to a pre-neuronal phenotype. Additionally, both uncontrollable nociception and morphine administration resulted in further dysregulation of SCI-sensitive miRNAs, along with their mRNA targets. Morphine administration significantly induced expression of both miR21 and IL6R expression, indicating that morphine-induced miRNA dysregulation is involved in the promotion of neuroinflammation that drives increased pain-sensitivity. Similarly, uncontrollable nociception significantly modulates expression of miR124, miR129, and miR146a, which inhibit cell cycle proteins and microglial activation, and dysregulation of these miRNAs, along with BDNF and IGF-1, likely contributes towards promotion of hypersensitivity in spinal neurons that underlies neuropathic pain. Consequently, SCI- sensitive miRNAs may constitute therapeutic targets for modulation of neuroinflammation and microglial activation in order to mitigate secondary injury, promote regeneration, and prevent maladaptive plasticity that drives neuropathic pain and exacerbation of chronic pain symptoms by morphine administration.
169

Investigation of Molecular and Cellular Mechanism of Myelin – Induced Axonal Degeneration

Dedeagac, Asli 22 November 2013 (has links)
Axon degeneration is a selective elimination of axons, which plays a crucial role during development, injury, and maintenance of neuronal connections. The p75 neurotrophin receptor (NTR) is responsible for maintaining the specificity of neuronal connectivity in parts of the adult brain by inducing the degeneration of aberrantly growing axons into myelinated tracts. The objective of this study is to identify and characterize the signaling pathways used by p75NTR to mediate axon degeneration on myelin. Since p75NTR signals via JNK/Bax/caspase pathway to cause apoptosis, I asked whether this pathway might also be involved in axon degeneration. I observed that inhibition of JNK or Bax significantly decreased myelin-induced axonal degeneration, while depolarization of axons with potassium chloride prevented axonal degeneration on myelin. Together, these results suggest that p75NTR-dependent, myelin-mediated axon degeneration occurs via JNK/BAX signaling, and that neural activity is important for the prevention of myelin-induced axonal degeneration.
170

Characterization of the CNS-specific F-box protein FBXO41 in cerebellar development

Holubowska, Anna 23 October 2013 (has links)
No description available.

Page generated in 0.0527 seconds