Spelling suggestions: "subject:"axonal degeneration"" "subject:"axonal 4egeneration""
1 |
Investigation of Molecular and Cellular Mechanism of Myelin – Induced Axonal DegenerationDedeagac, Asli 22 November 2013 (has links)
Axon degeneration is a selective elimination of axons, which plays a crucial role during development, injury, and maintenance of neuronal connections. The p75 neurotrophin receptor (NTR) is responsible for maintaining the specificity of neuronal connectivity in parts of the adult brain by inducing the degeneration of aberrantly growing axons into myelinated tracts. The objective of this study is to identify and characterize the signaling pathways used by p75NTR to mediate axon degeneration on myelin. Since p75NTR signals via JNK/Bax/caspase pathway to
cause apoptosis, I asked whether this pathway might also be involved in axon degeneration. I
observed that inhibition of JNK or Bax significantly decreased myelin-induced axonal degeneration, while depolarization of axons with potassium chloride prevented axonal degeneration on myelin. Together, these results suggest that p75NTR-dependent, myelin-mediated axon degeneration occurs via JNK/BAX signaling, and that neural activity is important for the prevention of myelin-induced axonal degeneration.
|
2 |
Investigation of Molecular and Cellular Mechanism of Myelin – Induced Axonal DegenerationDedeagac, Asli 22 November 2013 (has links)
Axon degeneration is a selective elimination of axons, which plays a crucial role during development, injury, and maintenance of neuronal connections. The p75 neurotrophin receptor (NTR) is responsible for maintaining the specificity of neuronal connectivity in parts of the adult brain by inducing the degeneration of aberrantly growing axons into myelinated tracts. The objective of this study is to identify and characterize the signaling pathways used by p75NTR to mediate axon degeneration on myelin. Since p75NTR signals via JNK/Bax/caspase pathway to
cause apoptosis, I asked whether this pathway might also be involved in axon degeneration. I
observed that inhibition of JNK or Bax significantly decreased myelin-induced axonal degeneration, while depolarization of axons with potassium chloride prevented axonal degeneration on myelin. Together, these results suggest that p75NTR-dependent, myelin-mediated axon degeneration occurs via JNK/BAX signaling, and that neural activity is important for the prevention of myelin-induced axonal degeneration.
|
3 |
Molecular mechanisms of acute axonal degeneration in the rat optic nerveZhang, Jiannan 11 November 2015 (has links)
No description available.
|
4 |
Role of SARM1 in Chronic Immune-Mediated Central Nervous System InflammationViar, Kenneth E, II 01 January 2019 (has links)
SARM1 is an injury-induced nicotinamide adenine dinucleotide nucleosidase (NADase) that was previously shown to promote axonal degeneration in response to traumatic, toxic, and excitotoxic stressors. This raises the question of whether a SARM1-dependent program of axonal degeneration is central to a common pathway contributing to disease burden in neurological disorders. The degree to and mechanism by which SARM1 inactivation decreases the pathophysiology of such disorders is of interest to establish the rationale to pursue SARM1 as a therapeutic target. In this study, we compare the course and pathology of experimental autoimmune encephalomyelitis (EAE) in Sarm1-knockout (KO) mice and wild-type littermates to test the contribution of SARM1-dependent axonal degeneration specifically in the context of chronic, immune-mediated central nervous system (CNS) inflammation. The question of whether SARM1 loss in Sarm1-KO mice would inhibit, promote, or have a negligible impact on EAE-induced axonal degeneration and more broadly CNS inflammation was explored using a variety of analyses: quantification of clinical score in a chronic EAE model, CNS immune infiltrate profile, axon initial segment morphology in layer V cortical neurons, axonal transport disruption and transection in the lumbar spinal cord. Additionally, we have proposed a method for detecting SARM1 activation in situusing a novel SARM1-mCitrine bimolecular fluorescence complementation (BiFC) technique. Successful implementation of such a molecular tool would allow for a detailed, mechanistic approach to enhance our understanding of upstream intracellular signals that trigger SARM1 activation.
|
5 |
Caractérisation des effets protecteurs du NAD+ et du Nicotinamide Riboside lors de la dégénérescence axonale dans le système nerveux central : Implications dans les processus neurodégénératifs / Characterization of NAD+ and Nicotinamide Riboside protective effects on axonal degeneration in neurodegenerative processesVaur, Pauline Magda Marie 04 October 2016 (has links)
Les maladies neurodégénératives se caractérisent par une déconnexion synaptique et une dégénérescence des axones (DA) précoces, menant à la mort spécifique d’une population neuronale. Les niveaux intracellulaires de NAD+, co-facteur essentiel dans le maintien de l’intégrité axonale, sont fortement diminués lors de ces pathologies. L’augmentation des taux de NAD+ est ainsi une stratégie thérapeutique dans la prévention de ces maladies. La capacité du nicotinamide riboside (NR) à retarder la DA dans le système nerveux périphérique (SNP) ainsi que la récente mise en évidence d'une conversion extracellulaire du NAD+ en NR dans des lignées cellulaires et dans le SNP soulignent l'intérêt de ce précurseur du NAD+. Mon projet de thèse repose sur la caractérisation des effets du NAD+ et du NR lors de la DA dans des neurones du système nerveux central (SNC). A partir d'un modèle d'excitotoxicité mis au point en dispositifs microfluidiques, nous montrons pour la première fois que le NR protège de la DA dans des neurones corticaux de manière plus efficace que le NAD+. Cet effet différentiel a également été validé dans un modèle ischémique in vivo. De manière surprenante, lors d'une neurodégénérescence induite par une déplétion aigüe en NAD+, un effet protecteur total à la fois du NAD+ et du NR a été mis en évidence. L'analyse de la voie de conversion extracellulaire a ainsi révélée une adaptation du métabolisme du NAD+ et de sa conversion en NR en fonction du paradigme neurotoxique. En conclusion, ce travail démontre un fort effet protecteur du NR dans le SNC et ouvre de nouvelles voies thérapeutiques dans la prévention des processus neurodégénératifs. / Synaptic and axonal degeneration (AxD) are major events in neurodegenerative diseases. Levels of NAD+, an important coenzyme for axonal integrity, are strongly reduced in different degeneration models so enhancing cellular NAD+ is one of the numerous therapeutic strategies against neuronal pathologies. Nicotinamide riboside (NR) is a good NAD+ precursor as it has already been shown to delay AxD in peripheral nervous system (PNS) and extracellular NAD+ conversion to NR was previously described in cell lines and in PNS. During my thesis project, we analyzed the role of NR metabolism to prevent degeneration processes in cortical neurons. Using an excitotoxicity model developed in microfluidic devices, we showed for the first time that both NAD+ and NR delay AxD in cortical neurons, with a more potent effect for NR. We confirm this differential effect in an in vivo ischemic model. Moreover, NR effect is mainly restricted to the axonal compartment and intracellular NAD+ depletion is reverted after NR application, suggesting that axonal integrity is totally dependent on NAD+ local metabolism. Furthermore, in a complete NAD+ depletion paradigm, NAD+ and NR have surprisingly the same strong effect, protecting equally neuronal death and AxD. Examination of the extracellular pathway suggest that NAD+ conversion to NR is limited in excitotoxicity but effective in the NAD+ depletion model. These results reveal that NR and NAD+ metabolism depend on the neurotoxic paradigm. Our results demonstrate that NR has a strong and local neuroprotective effect on AxD in several neurotoxic processes. These findings open new therapeutic strategies to prevent neurodegenerative diseases.
|
6 |
Investigation of the stimuli inducing delayed oligodendrocyte apoptosis after rat spinal cord contusion injurySun, Fang 21 September 2006 (has links)
No description available.
|
7 |
Axonal Na/K ATPase: Localization, Loss, and Lessons LearnedYoung, Elizabeth Ann January 2010 (has links)
No description available.
|
8 |
Effects of recombinant human erythropoietin in the cuprizone mouse model of de- and remyelination / Wirkungen von rekombinantem humanen Erythropoietin im Cuprizone-Maus-ModellHagemeyer, Nora 18 May 2012 (has links)
No description available.
|
9 |
Quantitative analysis of neuropathological alterations in two transgenic mouse models of Alzheimer's diseaseKurdakova, Anastasiia 23 November 2016 (has links)
No description available.
|
10 |
Analysis of the Impact Hyperglycemia has on Neuronal Functions Using Genetic Approaches in Caenorhabditis elegansRuiz, Manuel Axel 05 1900 (has links)
A chronic hyperglycemic state often results in neuropathological complications such as peripheral diabetic neuropathy (PDN). PDN is a debilitating medical condition that impacts over half of the US population with diabetes. In this study, we used the model organism Caenorhabditis elegans to determine that glucose-supplemented diet leads to an increased rate of intrauterine egg hatching (IUEH) and the reduction of dopamine and serotonin is sufficient to suppress the glucose-induced IUEH. Moreover, in this research demonstrates that a glucose-supplemented diet impacts serotonin and dopamine-associated behaviors. Additionally, we demonstrate that a diet rich in glucose impacts the structure of the serotonergic neurons HSN and NSM. These findings highlight the utility of the model organism C. elegans in elucidating the impact of a glucose-supplemented diet on the nervous system. Finally, these studies show that a glucose-supplemented diet impacts transgenerational and intergenerational phenotypes as well as changes in the transcriptional profile of subsequent generations.
|
Page generated in 0.1047 seconds