• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 6
  • 2
  • 1
  • Tagged with
  • 22
  • 22
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modulation of Aneuploidy in Leishmania donovani during Adaptation to Different In Vitro and In Vivo Environments and Its Impact on Gene Expression.

Dumetz, F., Imamura, H., Sanders, M., Seblova, V., Myskova, J., Pescher, P., Vanaerschot, M., Meehan, Conor J., Cuypers, B., De Muylder, G., Späth, G.F., Bussotti, G., Vermeesch, J.R., Berriman, M., Cotton, J.A., Volf, P., Dujardin, J.-C., Domagalska, M.A. 24 September 2019 (has links)
Yes / Aneuploidy is usually deleterious in multicellular organisms but appears to be tolerated and potentially beneficial in unicellular organisms, including pathogens. Leishmania, a major protozoan parasite, is emerging as a new model for aneuploidy, since in vitro-cultivated strains are highly aneuploid, with interstrain diversity and intrastrain mosaicism. The alternation of two life stages in different environments (extracellular promastigotes and intracellular amastigotes) offers a unique opportunity to study the impact of environment on aneuploidy and gene expression. We sequenced the whole genomes and transcriptomes of Leishmania donovani strains throughout their adaptation to in vivo conditions mimicking natural vertebrate and invertebrate host environments. The nucleotide sequences were almost unchanged within a strain, in contrast to highly variable aneuploidy. Although high in promastigotes in vitro, aneuploidy dropped significantly in hamster amastigotes, in a progressive and strain-specific manner, accompanied by the emergence of new polysomies. After a passage through a sand fly, smaller yet consistent karyotype changes were detected. Changes in chromosome copy numbers were correlated with the corresponding transcript levels, but additional aneuploidy-independent regulation of gene expression was observed. This affected stage-specific gene expression, downregulation of the entire chromosome 31, and upregulation of gene arrays on chromosomes 5 and 8. Aneuploidy changes in Leishmania are probably adaptive and exploited to modulate the dosage and expression of specific genes; they are well tolerated, but additional mechanisms may exist to regulate the transcript levels of other genes located on aneuploid chromosomes. Our model should allow studies of the impact of aneuploidy on molecular adaptations and cellular fitness. / This study was supported by Belgian Science Policy Office (TRIT, P7/41), Flemish Fund for Scientific Research (G.0.B81.12), and Department of Economy, Science and Innovation in Flanders ITM-SOFIB (SINGLE project, to J.C.D.). G.D. and B.C. were supported by the Research Foundation—Flanders (FWO) (grants 12Q8115N and 11O1614N, respectively). V.S., J.M. and P.V. were supported by Czech Science Foundation (project no. 13-07500S) and Charles University (UNCE 204017/2012). J.R.V. was supported by research grants from the KU Leuven (SymBioSys [PFV/10/016]) and the Hercules Foundation (ZW11-14). M.S., M.B., and J.A.C. were supported by the Wellcome Trust through the core support for the Wellcome Trust Sanger Institute (grant no. 098051). G.B., P.P., and G.F.S. were supported by Institut Pasteur strategic fund for the LeiSHield project (to G.F.S.).
2

Fractionation Resistance of Duplicate Genes Following Whole Genome Duplication in Plants as a Function of Gene Ontology Category and Expression Level

Chen, Eric Chun-Hung January 2015 (has links)
With the proliferation of plant genomes being sequenced, assembled, and annotated, duplicate gene loss from whole genome duplication events, also known in plants as frac- tionation, has shown to have a different pattern from the classic gene duplication models described by Ohno in 1970. Models proposed more recently, the Gene Balance and Gene Dosage hypotheses, try to model this pattern. These models, however, disagree with each other on the relative importance of gene function and gene expression. In this thesis we explore the effects of gene function and gene expression on duplicate gene loss and retention. We use gene sequence similarity and gene order conservation to construct our gene fam- ilies. We applied multiple whole genome comparison methods across various plants in rosids, asterids, and Poaceae in looking for a general pattern. We found that there is great consistency across different plant lineages. Genes categorized as metabolic genes with low level of expression have relatively low fractionation resistance, losing duplicate genes readily, while genes categorized as regulation and response genes with high level of expression have relatively high fractionation resistance, retaining more duplicate gene pairs or triples. Though both gene function and gene expression have important effects on retention pattern, we found that gene function has a bigger effect than gene expression. Our results suggest that both the Gene Balance and Gene Dosage models account to some extent for fractionation resistance.
3

DYRK1A-Related Trabecular Defects in Male Ts65Dn Mice Emerge During a Critical Developmental Window

LaCombe, Jonathan M. 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Down syndrome (DS) is a complex genetic disorder caused by the triplication of human chromosome 21 (Hsa21). The presence of an extra copy of an entire chromosome greatly disrupts the copy number and expression of over 350 protein coding genes. This gene dosage imbalance has far-reaching effects on normal development and aging, leading to cognitive and skeletal defects that emerge earlier in life than the general population. The present study begins by characterizing skeletal development in young male Ts65Dn mice to test the hypothesis that skeletal defects in male Ts65Dn mice are developmental in nature.Femurs from young mice ranging from postnatal day 12- to 42-days of age (P12-42) were measured and analyzed by microcomputed tomography (μCT). Cortical defects were present generally throughout development, but trabecular defects emerged at P30 and persisted until P42. The gene Dual-specificity tyrosine-regulated kinase 1a (Dyrk1a) is triplicated in both DS and in Ts65Dn mice and has been implicated as a putative cause of both cognitive and skeletal defects. To test the hypothesis that trisomic Dyrk1a is related to the emergence of trabecular defects at P30, expression of Dyrk1a in the femurs of male Ts65Dn mice was quantified by qPCR. Expression was shown to fluctuate throughout development and overexpression generally aligned with the emergence of trabecular defects at P30. The growth rate in trabecular measures between male Ts65Dn and euploid littermates was similar between P30 and P42, suggesting a closer look into cellular mechanisms at P42. Assessment of proliferation of BMSCs, differentiation and activity of osteoblasts showed no significant differences between Ts65Dn and euploid cellular activity, suggesting that the cellular microenvironment has a greater influence on cellular activity than genetic background. These data led to the hypothesis that reduction of Dyrk1a gene expression and pharmacological inhibition of DYRK1A could be executed during a critical period to prevent the emergence of trabecular defects at P30. To tests this hypothesis, doxycycline-induced cre-lox recombination to reduce Dyrk1a gene copy number or the DYRK1A inhibitor CX-4945 began at P21. The results of both genetic and pharmacological interventions suggest that trisomic Dyrk1a does not influence the emergence of trabecular defects up to P30. Instead, data suggest that the critical window for the rescue of trabecular defects lies between P30 and P42.
4

Uncovering the molecular pathways of MBD5 in neurodevelopmental disorders

Mullegama, Sureni 15 March 2013 (has links)
Neurodevelopmental disorders (NDs) are a growing public health concern. These complex disorders cause failure of normal brain development, which leads to intellectual disability (ID) or autism in 3% of children. Accurate diagnosis of NDs is difficult due to complex overlapping phenotypes. Moreover, associations between phenotypically similar NDs and their overlapping molecular mechanisms remain unidentified. The chromosome 2q23.1 region is a newly discovered disease region. We have recently identified a novel ND, 2q23.1 deletion syndrome. The phenotype includes severe ID, significantly delayed speech, behavioral problems, seizures and short stature. This syndrome shares characteristics in common with other genetic syndromes, including Smith-Magenis (SMS, RAI1), Pitt-Hopkins (PTH, TCF4), Angelman (AS, UBE3A) and Rett (RTT, MECP2) syndromes, including ID, speech impairment, and seizures, in addition to other autism spectrum disorder (ASD)-associated phenotypes (associated with mutation of MBD1). The methyl-CpG binding domain protein 5 (MBD5) is thought to be the causative gene for the core phenotype seen in del2q23. We propose that MBD5 is a dosage dependent gene, wherein deletion or duplication results in two distinct syndromes. We hypothesize that deletions, mutations, and duplications in MBD5 and its associated overlapping gene networks are responsible for causing the phenotype seen in 2q23.1 disorders. Furthermore, we hypothesize that syndromic neurodevelopmental genes are involved in common biological networks that, when dysregulated, result in the overlapping phenotypes present in many of these neurodevelopmental disorders. We first show that the causative gene for 2q23.1 deletion syndrome is MBD5. We established a consortium of clinical diagnostic and research laboratories to accumulate a large cohort with genetic alterations of chromosome 2q23.1, acquiring 65 subjects with microdeletion or translocation. We sequenced translocation breakpoints, aligned microdeletions to determine the critical region, assessed effects on mRNA expression, and examined medical records, photos, and clinical evaluations. We identified MBD5 as the only locus that defined the critical region. Partial or complete deletion of MBD5 was associated with haploinsufficiency, intellectual disability, epilepsy, and autistic features. Sixteen alterations disrupted MBD5 alone, including partial deletions of noncoding regions not typically captured or considered pathogenic by current diagnostic screening. Expression profiles and clinical characteristics were largely indistinguishable between MBD5-specific alteration and deletion of the entire 2q23.1 interval. We surveyed MBD5 coding polymorphisms among 747 ASD subjects compared to 2,043 non-ASD subjects analyzed by whole-exome sequencing and detected an association with a highly conserved methyl-CpG binding domain missense variant, G79E (p=0.012). Thus, we establish that haploinsufficiency of MBD5 is the primary causal factor in 2q23.1 microdeletion syndrome and that mutations in MBD5 are associated with autism. Secondly, we show that MBD5 is a dosage dependent region, wherein deletion or duplication results in altered gene dosage. We previously established the 2q23.1 microdeletion syndrome and report herein 23 individuals with 2q23.1 duplications, thus establishing a complementary duplication syndrome. The observed phenotype includes intellectual disability, motor delay, language impairments, infantile hypotonia and gross motor delay, behavioral problems, autistic features, dysmorphic facial features (pinnae anomalies, arched eyebrows, prominent nose, small chin, thin upper lip), and minor digital anomalies (fifth finger clinodactyly and large broad first toe). The microduplication size varies among all cases and ranges from 680 kb to 53.7 Mb, encompassing a region that includes MBD5. Phenotypic analyses suggest that 2q23.1 duplication results in a slightly less severe phenotype than the reciprocal deletion. The features associated with a deletion, mutation, or duplication of MBD5 and the gene expression changes observed support MBD5 as a dosage sensitive gene critical for normal development. Dup(2)(q23.1) causes a phenotype similar to del(2)(q23.1) and other NDs, like SMS and autism, suggesting shared molecular pathways. Finally, chromatin-modifying genes play an important role in the genetic etiology of many NDs, including intellectual disability, epilepsy, and autism. Many monogenic NDs are caused by chromatin modifying genes, including 2q23.1 deletion and duplication, SMS, RTT, AS, fragile X syndrome (FXS), and PTH. Many of these disorders have overlapping features that include language, sleep, and behavioral anomalies. Investigation of relative gene expression by quantitative PCR and microarray of cell lines from individuals with disorders due to altered expression of MBD5, RAI1, MECP2, UBE3A, TCF4, and MBD1 revealed molecular signatures that allowed for the generation of a novel neurodevelopmental molecular network supporting the overlapping features across these syndromes. Further, knockdown of MBD5 and RAI1 in SH-SY5Y and HEK293T cell lines expanded the repertoire of genes involved in these pathways and showed that other chromatin modifying genes, as well as developmental genes are dysregulated. Pathway analyses showed that MBD5 and RAI1 function in chromatin remodeling, circadian rhythm, neuronal development, and cell growth/survival pathways. From these studies, precise gene dosage of chromatin modifying genes, such as RAI1 and MBD5 are clearly a requirement for normal neurodevelopment and function. Taken together, these studies have given us insight into the role of MBD5 as a dosage sensitive gene in two NDs. Furthermore, we gained insight of how dosage effects of MBD5 and RAI1 affect molecular pathways that are linked to neuronal and behavioral development. We have unveiled pathways and genes, which are important to normal human development, neurodevelopment and behavior. These findings support further investigations into the relationships among causative neurodevelopmental genes, which will lead to common points of regulation that may be targeted toward therapeutic intervention.
5

The type I antifreeze protein gene family in Pleuronectidae

Nabeta, Kyra Keiko 02 February 2009 (has links)
Antifreeze proteins (AFPs) protect marine teleosts from freezing in icy seawater by binding to nascent ice crystals and preventing their growth. It has been suggested that the gene dosage for AFPs in fish reflects the degree of exposure to harsh winter climates. The starry flounder, _Platichthys stellatus_, has been chosen to examine this relationship because it inhabits a range of the Pacific coast from California to the Arctic. This flatfish is presumed to produce type I AFP, which is an alanine-rich, amphipathic alpha-helix. Genomic DNA from four starry flounder was Southern blotted and probed with a cDNA of a winter flounder liver AFP. The hybridization signal was consistent with a gene family of approximately 40 copies. Blots of DNA from other starry flounder indicate that California fish have far fewer gene copies whereas Alaska fish have far more. This analysis is complicated by the fact that there are three different type I AFP isoforms. The first is expressed in the liver and secreted into circulation, the second is a larger hyperactive dimer also thought to be expressed in the liver, and the third is expressed in peripheral tissues. To evaluate the contribution of these latter two isoforms to the overall gene signal on Southern blots, hybridization probes for the three isoforms were isolated from starry flounder DNA by genomic cloning. Two clones revealed linkage of genes for different isoforms, and this was confirmed by genomic Southern blotting, where hybridization patterns indicated that the majority of genes were present in tandem repeats. The sequence and diversity of all three isoforms was sampled in the starry flounder genome by PCR. All coding sequences derived for the skin and liver isoforms were consistent with the proposed structure-function relationships for this AFP, where the flat hydrophobic side of the helix is conserved for ice binding. There was greater sequence diversity in the skin and hyperactive isoforms than in the liver isoform, suggesting that the latter evolved recently from one of the other two. The genomic PCR primers are currently being used to sample isoform diversity in related right-eyed flounders to test this hypothesis. / Thesis (Master, Biochemistry) -- Queen's University, 2009-01-30 13:38:08.346
6

Genetic studies of acute lymphoblastic leukemia /

Kuchinskaya, Ekaterina, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 4 uppsatser.
7

Molecular markers reflecting malignant transformation and tumor progression /

Stoltzfus, Patricia, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 4 uppsatser.
8

An iPS-Based Approach to Study the Transcriptional and Epigenetic Consequences of X-Chromosome Aneuploidies

Alowaysi, Maryam 08 1900 (has links)
Klinefelter Syndrome (KS) is a multisystemic disorder associated with a plethora of phenotypic features including mental retardation, cardiac abnormalities, osteoporosis, infertility, gynecomastia, type two diabetes and increased cancer risk. KS is the most common aneuploidy in humans (with a prevalence of 1:500 to 1:1000 born males) and is characterized by one or more supernumerary X-chromosomes (47-XXY, 48-XXXY, and 49-XXXXY karyotypes). While X-chromosome inactivation (XCI) represses extra Xs, few genes called “escape genes” elude the XCI mechanism and are actively transcribed from X inactive. The overdosage of escape genes has been considered the molecular landscape that underlies KS clinical features. In this project, we exploit an integration-free reprogramming method to generate the largest described cohort of iPSCs from seven patients with KS and healthy donor fibroblasts from two relatives. The unicity of this cohort relies on the derivation of 47-XXY iPSCs and their isogenic 46-XY healthy counterparts, along with multiple rare 48-XXXY and 49-XXXXY iPSC lines. Through X chromosome inactivation (XCI) assessment, we show consistent retention of n-1 XCI in all derived KS-iPSCs. We identify the genes within the PAR1 region as the most susceptible to dosage-dependent transcriptional dysregulation and therefore putatively responsible for the progressively worsening phenotype in higher grade X aneuploidies. Moreover, we explore the transcriptional impact of X overdosage on autosomes and identify that the X-dosage-sensitive autosomal transcription factor NRF1 is a master regulator of the X-linked escape gene ZFX. Finally, we dissect the potential pathological impact of the escape gene KDM6A on low- and high-grade supernumerary X iPSCs and differentiated derivatives. We highlight a considerable proportion of KDM6A targets that could be responsible for paradigmatic clinical manifestations of KS.
9

Genomic Instability and Gene Dosage Obscures Clues to Virulence Mechanisms of F. tularensis species

Modise, Thero 06 September 2016 (has links)
The pathogen Francisella tularensis subsp. tularensis has been classified as a Center for Disease Control (CDC) select agent. However, little is still known of what makes the bacteria cause dis-ease, especially the highly virulent type A1 strains. The work in this dissertation focused on type A1 strains from the Inzana laboratory, including a wildtype virulent strain TI0902, an avirulent chemical mutant strain TIGB03 with a Single Nucleotide Polymorphism in the wbtK gene, and several complemented mutants, [wbtK+]TIGB03, with dramatic differences in virulence and growth rates. One of the complemented clones (Clone12 or avp-[wbtK+]TIGB03-C12) was aviru-lent, but protected mice against challenge of a lethal dose of TI0902 and was considered as a possible vaccine strain. Whole genome sequencing was performed to identify genetic differences between the virulent, avirulent and protective strains using both Roche/454 and Illumina next-generation sequencing technologies. Additionally, RNASeq analysis was performed to identify differentially expressed genes between the different strains. This comprehensive genomic analysis revealed the critical role of transposable elements in inducing genomic instability resulting in large du-plications and deletions in the genomes of the chemical mutant and the complemented clones that in turn affect gene dosage and expression of genes known to regulate virulence. For exam-ple, whole genome sequencing of the avirulent chemical mutant TIGB03 revealed a large 75.5 kb tandem duplication flanked by transposable elements, while the genome of a virulent Clone01 (vir-[wbtK+]TIGB03-C1) lost one copy of the 75.5 kb tandem duplicated region but gained a tandem duplication of another large 80kb region that contains a virulence associated transcription factor SspA. RNAseq data showed that the dosage effect of this extra region in Clone1 suppresses expression of MglA regulated genes. Since MglA regulates genes that are known to be crucial for virulence, including the well-studied Francisella Pathogenicity Island (FPI), these results suggest that gene dosage effects arising from large duplications can trigger unknown virulence mechanisms in F. tularensis subsp. tularensis. These results are important especially when designing live vaccine strains that have repeated insertion elements in their genomes. / Ph. D.
10

Genomic and transcriptomic variation in blood stage Plasmodium falciparum /

Mok, Bobo, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 4 uppsatser.

Page generated in 0.0613 seconds