• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 2
  • 2
  • 2
  • Tagged with
  • 31
  • 31
  • 11
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Estudo de determinação dos parâmetros que descrevem a dinâmica de uma supernova galática por um detector de neutrinos futuro / Study determination of parameters that describe the dynamics of a galatic supernova by a future neutrino detector

Felix, Regina Celia Medeiros 21 May 2009 (has links)
O objetivo desta dissertação foi estudar os sinais que neutrinos provenientes de supernovas galáticas poderão produzir em detectores futuros, através de simulações de eventos observados na Terra por um detector Cherenkov pela reação de decaimento beta inverso. Por ser um local único em que neutrinos se encontram em condições de equilíbrio térmico, a física de neutrinos de supernova pode ser fonte de novo conhecimento na física de partículas elementares. Iniciamos o trabalho apresentando os aspectos mais importantes da física de neutrinos tal como é conhecida hoje, seguido de um estudo do papel do neutrino na explosão de uma supernova do tipo II e a influência das oscilações em futuras observações. As simulações foram feitas primeiramente considerando uma supernova de potencial estático, com a determinação de limites nos principais parâmetros que descrevem sua dinâmica. Utilizamos os casos de hierarquia normal e inversa e ângulos de mistura nos limites totalmente adiabático e não-adiabático. Posteriormente consideramos uma supernova de potencial dinâmico, a partir da qual estudamos o comportamento das probabilidades de transição e o perfil do espectro detectado nos mesmos casos anteriores. Com este potencial também foi possível observar o comportamento temporal do espectro e como este pode ser modificado com a hierarquia e ângulo de mistura. Mostramos que em uma futura detecção, o número de eventos e conseqüentemente sua variação com parâmetros de supernova não terão interferência considerável do efeito de onda de choque. Contudo, este pode causar distorções no espectro energético e temporal que poderão ter papel importante na determinação da hierarquia de massa e maior delimitação do ângulo de mistura. / The goal of this dissertation is to study the signals that supernova neutrinos could produce in future detectors, through simulations of events observed on Earth by a Cherenkov detector and inverse beta decay reaction. Since a supernova has been the only situation in which neutrinos are able to reach thermal equilibrium, the physics of supernova neutrinos can be source of a new knowledge in physics of elementary particles. We begin this work presenting the most important aspects of neutrino physics as known today, and then studying the role of neutrino in a type II supernova explosion and the oscillation influence in future observations. The simulations were initially performed considering a static potential, defining limits for the main parameters that describe its dynamics. We considered the cases of normal and inverse mass hierarchy and mixing angles within fully adiabatic and non-adiabatic limits. Later we used a supernova dynamic potential to study behavior of transitions probabilities and the profile of the spectrum detected in these previous cases. From this potential we also observed the temporal behavior of the spectrum and how it can be modified with the hierarchy and the mixing angle. We show that, in a future detection, the number of events and hence their variations with supernova parameters, will not suffer interference of the shock wave effect. However, this effect can cause distortions in the energy and time spectrum that could have an important role in determining the mass hierarchy and better constraints for the mixing angle.
12

Measurement of the neutrino oscillation parameters sin²θ23 Δm²32, sin²θ13, and σCP in neutrino and antineutrino oscillation at T2K

Duffy, Kirsty January 2016 (has links)
The T2K experiment is a long-baseline neutrino oscillation experiment, in which a muon neutrino beam is directed over a 295 km baseline from the J-PARC facility to the Super-Kamiokande detector. This allows neutrino oscillation to be studied in two channels: disappearance of &nu;<sub>&mu;</sub> and appearance of &nu;<sub>e</sub>. The T2K beam can be run either in neutrino or antineutrino configuration, for a neutrino beam which is predominantly composed of &nu;<sub>&mu;</sub> or anti -&nu;<sub>&mu;</sub> respectively. This thesis presents the first oscillation analysis to combine neutrino-mode and antineutrino-mode data sets, giving the first ever sensitivity to the CP-violating phase &delta;<sub>CP</sub> from T2K data alone, as well as the most precise T2K measurement of the other neutrino oscillation parameters. The analysis uses a Markov Chain Monte Carlo method to construct a sample from the Bayesian posterior distribution, from which the oscillation parameters of interest and their uncertainties are estimated. Data samples from the T2K near detector, ND280, are fit simultaneously with data from the far detector in order to reduce the uncertainty in the far-detector prediction. When fitting the T2K data alone, the best-fit oscillation parameter values are sin<sup>2</sup> &theta;<sub>23</sub>= 0.519<sup>+0.031</sup><sub style='position: relative; left: -2.8em;'>-0.059</sub>, sin<sup>2</sup> &theta;<sub>13</sub>= 0.0257<sup>+0.0106</sup><sub style='position: relative; left: -3.2em;'>-0.0440</sub>, &Delta;m<sup>2</sup><sub style='position: relative; left: -0.4em;'>32</sub>= 2.54<sup>+0.12</sup><sub style='position: relative; left: -2em;'>-0.10</sub> x 10<sup>-3</sup>eV<sup>2</sup>,and &delta;<sub>CP</sub>=-1.91 rad. The 90&percnt; credible interval for &delta;<sub>CP</sub> excludes values around &pi;/2: &delta;<sub>CP</sub> &notin; [0.38, 2.60] rad. When fitting the T2K data with a constraint on sin<sup>2</sup> &theta;<sub>13</sub> from measurements by reactor experiments, the best-fit oscillation parameter values are sin<sup>2</sup> &theta;<sub>23</sub>= 0.519<sup>+0.061</sup><sub style='position: relative; left: -2.8em;'>-0.029</sub>, sin<sup>2</sup> &theta;<sub>13</sub>= <sup>+0.0014</sup><sub style='position: relative; left: -3.2em;'>-0.0014</sub>, Dm<sup>2</sup><sub style='position: relative; left: -0.4em;'>32</sub>= 2.54<sup>+0.12</sup><sub style='position: relative; left: -2em;'>-0.12</sub> x 10<sup>-3</sup>eV<sup>2</sup>, and &delta;<sub>CP</sub>=-1.72 rad. The 90&percnt; credible interval for &delta;<sub>CP</sub> contains values &delta;<sub>CP</sub> &isin; [-3.10,-0.17] rad, excluding the CP-conserving values 0 and ± &pi; at 90&percnt; probability.
13

Estudo de determinação dos parâmetros que descrevem a dinâmica de uma supernova galática por um detector de neutrinos futuro / Study determination of parameters that describe the dynamics of a galatic supernova by a future neutrino detector

Regina Celia Medeiros Felix 21 May 2009 (has links)
O objetivo desta dissertação foi estudar os sinais que neutrinos provenientes de supernovas galáticas poderão produzir em detectores futuros, através de simulações de eventos observados na Terra por um detector Cherenkov pela reação de decaimento beta inverso. Por ser um local único em que neutrinos se encontram em condições de equilíbrio térmico, a física de neutrinos de supernova pode ser fonte de novo conhecimento na física de partículas elementares. Iniciamos o trabalho apresentando os aspectos mais importantes da física de neutrinos tal como é conhecida hoje, seguido de um estudo do papel do neutrino na explosão de uma supernova do tipo II e a influência das oscilações em futuras observações. As simulações foram feitas primeiramente considerando uma supernova de potencial estático, com a determinação de limites nos principais parâmetros que descrevem sua dinâmica. Utilizamos os casos de hierarquia normal e inversa e ângulos de mistura nos limites totalmente adiabático e não-adiabático. Posteriormente consideramos uma supernova de potencial dinâmico, a partir da qual estudamos o comportamento das probabilidades de transição e o perfil do espectro detectado nos mesmos casos anteriores. Com este potencial também foi possível observar o comportamento temporal do espectro e como este pode ser modificado com a hierarquia e ângulo de mistura. Mostramos que em uma futura detecção, o número de eventos e conseqüentemente sua variação com parâmetros de supernova não terão interferência considerável do efeito de onda de choque. Contudo, este pode causar distorções no espectro energético e temporal que poderão ter papel importante na determinação da hierarquia de massa e maior delimitação do ângulo de mistura. / The goal of this dissertation is to study the signals that supernova neutrinos could produce in future detectors, through simulations of events observed on Earth by a Cherenkov detector and inverse beta decay reaction. Since a supernova has been the only situation in which neutrinos are able to reach thermal equilibrium, the physics of supernova neutrinos can be source of a new knowledge in physics of elementary particles. We begin this work presenting the most important aspects of neutrino physics as known today, and then studying the role of neutrino in a type II supernova explosion and the oscillation influence in future observations. The simulations were initially performed considering a static potential, defining limits for the main parameters that describe its dynamics. We considered the cases of normal and inverse mass hierarchy and mixing angles within fully adiabatic and non-adiabatic limits. Later we used a supernova dynamic potential to study behavior of transitions probabilities and the profile of the spectrum detected in these previous cases. From this potential we also observed the temporal behavior of the spectrum and how it can be modified with the hierarchy and the mixing angle. We show that, in a future detection, the number of events and hence their variations with supernova parameters, will not suffer interference of the shock wave effect. However, this effect can cause distortions in the energy and time spectrum that could have an important role in determining the mass hierarchy and better constraints for the mixing angle.
14

Study and selection of scintillating crystals for the bolometric search for neutrinoless double beta decay / Etude et sélection de cristaux scintillants pour la recherche de la double désintégration bêta sans neutrino avec des bolomètres scintillants

Zolotarova, Anastasiia 24 September 2018 (has links)
L'observation de la désintégration double bêta sans émission de neutrino (0ν2β) fournirait des informations essentielles sur la nature du neutrino et son échelle de masse absolue. Ce processus consiste en la transformation simultanée de deux protons en deux neutrons avec l'émission de deux électrons et aucun neutrino. Cette transition n'est possible que si les neutrinos sont égaux aux antineutrinos (nature Majorana du neutrino). Les recherches pour une désintégration à ce point rare représentent un défi technique complexe, car les expériences de prochaine génération visent des sensibilités de l'ordre de 10^27-10^28 ans afin d'avoir un potentiel de découverte élevé. Cette thèse est focalisée sur les projets LUMINEU et CUPID-Mo, développant la technique des bolomètres scintillants pour la recherche de désintégration 0ν2β avec le radio-isotope 100Mo.Les bolomètres sont des détecteurs cryogéniques mesurant l'énergie des particules déposées via un changement de température dans l'absorbeur. Si des cristaux scintillants sont utilisés comme absorbeurs, les signaux lumineux peuvent être enregistrés avec un bolomètre auxiliaire, sensible à l'énergie totale déposée par les photons de scintillation. Une telle configuration permet de séparer les particules α des γ/β, en rejetant le fond le plus difficile. La technologie des bolomètres scintillants est décrite en détail comme une option pour une future expérience cryogénique à l'échelle d'une tonne, appelée CUPID, qui peut couvrir complètement la région de masses de neutrinos dans la hiérarchie inversée. / Neutrinoless double beta (0ν2β) decay is a process of great interest for neutrino physics: its observation would provide essential information on neutrino nature and its absolute mass scale. This process consists of the simultaneous transformation of two protons into two neutrons with the emission of two electrons and no neutrino, implying the violation of the total lepton number. Such transition is possible only if neutrinos are equal to antineutrinos (Majorana particles). The searches for such a rare decay are becoming a complicated technical challenge, as next generation of 0ν2β experiments aim at sensitivities of the order of half-life at 10^27-10^28 yr. This thesis is focused on LUMINEU and CUPID-Mo projects, developing the scintillating bolometers technique for 0ν2β decay search with 100Mo with Li2MoO4 crystals. Bolometers are cryogenic detectors measuring the deposited particle energy as a change of temperature in the absorber. The use of scintillating crystals allows to perform discrimination of α particles from γ/β ones due to different light output of these two particle types, rejecting the most challenging background. The scintillating bolometers technology is described in details as an option for a future ton-scale cryogenic experiment, named CUPID, which can completely cover the inverted hierarchy region of neutrino masses.
15

Sensitivity enhancement of the CUORE experiment via the development of Cherenkov hybrid TeO₂ bolometers / Amélioration de la sensibilité de l'expérience CUORE par le développement de bolomètres de TeO₂ hybrides à “lumière Cherenkov

Novati, Valentina 21 November 2018 (has links)
CUORE est la plus grande expérience qui recherche la double désintégration bêta sans neutrino avec des bolomètres de TeO₂. La découverte de cette transition nucléaire aurait des conséquences décisives sur la scène actuelle de la physique. Les questions suivantes trouveraient une réponse : pourquoi la matière est-elle dominante dans l’Univers? Quelle est la masse du neutrino? Le neutrino est il un particule de Majorana ou de Dirac? Ce travail présente deux approches différentes pour l’amélioration de la sensibilité de CUORE en vue de sa prochaine phase : CUPID. Dans la première partie de ce travail, une étude du modèle thermique pour les bolomètres équipés avec des NTDs est présentée dans le but de mieux comprendre la réponse des détecteurs de CUORE. Les bolomètres sont des détecteurs extraordinaires utilisés pour un grand nombre d’applications en raison de leurs performances remarquables, mais leur modélisation et leur simulation sont loin d’être complètement comprises. Deux mesures ont été effectuées pour évaluer expérimentalement deux paramètres du modèle thermique : la conductance de la colle et celle entre les électrons et les phonons. Dans la deuxième partie de ce travail, la possibilité de détecter la faible lumière Cherenkov émise par le TeO₂ est étudiée à fin de rejeter des événements alpha, le fond principal de l’expérience CUORE. Le défi consiste dans la détection d’un signal de lumière de 100 eV à moyen d’un détecteur équipé avec un NTD qui a normalement un bruit de l’ordre de 100 eV. Cette question peut être résolue grâce à l’effet Neganov-Trofimov-Luke (NTL) qui a permis de baisser le seuil du détecteur de lumière et d'améliorer son rapport signal-sur-bruit. Cet effet exploite la présence d’un champ électrique pour amplifier les signaux thermiques des bolomètres. Le rejet complet du fond alpha a été prouvé avec un photo-bolomètre amélioré par l’effet NTL et couplé à un bolomètre de TeO₂ comme ceux utilisés par CUORE. Une solution convaincante pour le rejet de fond alpha a été démontrée en vue de l’expérience CUPID. / CUORE is the first tonne-scale experiment searching for the neutrinoless double beta decay with TeO₂ bolometers. The discovery of this nuclear transitionwould have decisive consequences on the present physics scene. The following questions would find an answer: why is matter dominant in the Universe? which is the neutrino mass? has the neutrino a Majorana or a Dirac nature? This work presents two different approaches for the enhancement of the CUORE sensitivity with a view to its upgrade: the CUPID experiment. In the first part, a study of the thermal model describing NTD-based bolometers is presented with the objective to achieve a better comprehension of the response of the CUORE detectors. Bolometers are amazing detectors used for a large number of applications because of their impressive high performance, but their modelisation and simulation is far to be completely understood. Two measurements have been performed for an experimental evaluation of two thermal-model parameters: the glue and the electron-phonon conductances. In the second part, the possibility to detect the tiny Cherenkov light emitted by TeO₂ to reject alpha events — the main background of the CUORE experiment — is studied. The challenge consists in the detection of a 100-eV light signal with a NTD-based light detector that usually is characterised by a baseline noise of the order of 100 eV. This issue is solved with the employment of the Neganov-Trofimov-Luke (NTL) effect to lower the energy threshold of the light detector and improve its signal-to-noise ratio. This effect exploits the presence of an electric field to amplify bolometric thermal signals. The full rejection of the alpha background has been proved with one NTL assisted photo-bolometer coupled to a CUORE-size TeO₂ bolometer. A convincing solution for the alpha background rejection has been demonstrated with a view to the CUPID experiment.
16

Le projet WA105 : un prototype de chambre à projection temporelle à argon liquide diphasique utilisant des détecteurs LEMs / The WA105 project : a prototype of double phase liquid argon time projection chamber using LEMs detectors

Cotte, Philippe 17 September 2019 (has links)
Le projet WA105/ProtoDUνE-DP est une expérience de prototypage qui a pour objectif de tester la technologie de Chambre à Projection Temporelle à Argon Liquide Diphasique (DLArTPC) à grande échelle dans le but de l'utiliser dans la future expérience de physique des neutrinos DUνE. Prévue fin 2026 aux USA, DUνE vise à déterminer l'ordre des masses des neutrinos ainsi que la violation de CP dans le secteur leptonique. Le travail de cette thèse s'oriente dans un premier temps autour des tests et simulations effectués sur les éléments de détection et d'amplification des détecteurs de WA105. Dans un second temps, la thèse s'oriente autour de l'analyse des traces de muons cosmiques vues par un premier prototype de 4t, opéré en 2017 au CERN. La technologie DLArTPC est une variante de la technologie LArTPC permettant une amplification des électrons extraits de la phase liquide à la phase gazeuse. Les amplificateurs d'électrons (LEMs) sont des plaques de PCB de 50x50cm² épais de 1mm, percés de 400k trous de 500 microns de diamètre, recouvertes de chaque côté par une mince couche de cuivre. Une différence de potentiel de l'ordre de 3kv permet d'atteindre un gain supérieur à 10. Une partie du travail de cette thèse a consisté à simuler la dérive des électrons à travers ces LEMs afin d'étudier les efficacités de collection de charge. Une autre partie de cette thèse a consisté à mesurer les caractéristiques importantes (épaisseur, tenue en tension) des amplificateurs destinés au démonstrateur de 300t de WA105, dont la mise en route a été effectuée fin août 2019 au CERN. Le gain est une des caractéristiques principales d'une DLArTPC, et il a été étudié dans le prototype de 4t grâce à la détection de muons cosmiques. Des comparaisons sont effectuées avec les résultats d'un prototype de 3L datant de 2014, et un programme de reconstruction de trace dédié a été développé pour traiter certains événements bruités. Le travail effectué dans cette thèse a permis de mieux comprendre le fonctionnement des DLArTPCs, notamment en ce qui concerne l'aspect multiplication et dérive des électrons. Ces connaissances seront importantes lors de l'opération du démonstrateur de 300t au CERN, ainsi que lors de l'exploitation du module DLArTPC de DUνE. / The WA105/ProtoDUνE-DP project is a prototyping experiment which goal is to test the Double Phase Liquid Argon Time Projection Chamber (DLArTPC) technology at large scale, to use it in the future neutrinos physics experiment DUνE. Scheduled for the end of 2026 in the USA, DUνE aims at measuring the neutrinos mass ordering and the leptonic CP symetry violation. The first part of this thesis is dedicated to tests and simulations of the detection and amplification elements of the WA105 detectors. The second part is focused on the analysis of cosmic muon tracks seen by a first prototype of 4t, operated at CERN in 2017. The DLArTPC technology is a variation of the LArTPC technology allowing for the amplification of the electrons extracted from the liquid phase to the gas phase. The Large Electron Amplifiers (LEMs) are 50x50cm² PCB plates with a thickness of 1mm, pierced by 400k holes of 500 microns diameter, covered on each side by a thin layer of copper giving a gain superior to 10. Part of this thesis work is about the simulation of electrons drifting through those LEMs to study the charge collection efficiencies. Another part of this thesis is about the measurement of important caracteristics (thickness, voltage stability) of the LEMs that are used in the 300t demonstrator of WA105, which commissionning was done in the end of August 2019. The gain is one of the main caracteristics of a DLArTPC, and it has been studied in the 4t prototype by detecting cosmic muons. Comparisons are done with previous results from 2014 from a smaller prototype of 3L, and a dedicated reconstruction program was created to analyse noisy events. The work done in the thesis allowed for a better understanding of DALrTPCs, mainly on the multiplication and drift of electrons. This knowledge will be important during the operation of the 300t demonstrator at CERN, and during the operationg of the DLArTPC module of DUνE.
17

Science and Technology of a Low-Energy Solar Neutrino Spectrometer (LENS) and Development of the MiniLENS Underground Prototype

Rountree, Steven Derek 11 June 2010 (has links)
A real time low energy spectral measurement of the neutrinos coming from the Sun will give us a greater understanding of energy production in the Sun, and the mechanisms of neutrino mixing. We will, for the first time, measure the solar neutrino spectrum for all solar neutrinos <2MeV in particular pp, Be and CNO neutrinos, be able to compare the solar photon derived energy luminosity (Lï §) to the solar neutrino derived energy luminosity (Lï ®) independent of any solar model, explore dark energy with respect to mass varying neutrinos, and explore CNO abundances in the Sun. These measurements require new technology in Indium loaded scintillators and large scale detector designs, namely increased spatial resolution through a novel scintillation lattice. I will present the advances we are making to these fields at Virginia Tech as well as neutrino science and the physics of the LENS detector. / Ph. D.
18

Corrections to and Applications of the Antineutrino Spectrum Generated by Nuclear Reactors

Jaffke, Patrick John 16 November 2015 (has links)
In this work, the antineutrino spectrum as specifically generated by nuclear reactors is studied. The topics covered include corrections and higher-order effects in reactor antineutrino experiments, one of which is covered in Ref. [1] and another contributes to Ref. [2]. In addition, a practical application, antineutrino safeguards for nuclear reactors, as summarized in Ref. [3,4] and Ref. [5], is explored to determine its viability and limits. The work will focus heavily on theory, simulation, and statistical analyses to explain the corrections, their origins, and their sizes, as well as the applications of the antineutrino signal from nuclear reactors. Chapter [1] serves as an introduction to neutrinos. Their origin is briefly covered, along with neutrino properties and some experimental highlights. The next chapter, Chapter [2], will specifically cover antineutrinos as generated in nuclear reactors. In this chapter, the production and detection methods of reactor neutrinos are introduced as well as a discussion of the theories behind determining the antineutrino spectrum. The mathematical formulation of neutrino oscillation will also be introduced and explained. The first half of this work focuses on two corrections to the reactor antineutrino spectrum. These corrections are generated from two specific sources and are thus named the spent nuclear fuel contribution and the non-linear correction for their respective sources. Chapter [3] contains a discussion of the spent fuel contribution. This correction arises from spent nuclear fuel near the reactor site and involves a detailed application of spent fuel to current reactor antineutrino experiments. Chapter [4] will focus on the non-linear correction, which is caused by neutron-captures within the nuclear reactor environment. Its quantification and impact on future antineutrino experiments are discussed. The research projects presented in the second half, Chapter [5], focus on neutrino applications, specifically reactor monitoring. Chapter [5] is a comprehensive examination of the use of antineutrinos as a reactor safeguards mechanism. This chapter will include the theory behind safeguards, the statistical derivation of power and plutonium measurements, the details of reactor simulations, and the future outlook for non-proliferation through antineutrino monitoring. / Ph. D.
19

Phenomenology of neutrino properties, unification, and Higgs couplings beyond the Standard Model

Riad, Stella January 2017 (has links)
The vast majority of experiments in particle physics can be described by the Standard Model of particle physics (SM). However, there are indications for physics beyond it. The only experimentally demonstrated problem of the model is the difficulty to describe neutrino masses and leptonic mixing. There is a plethora of models that try to describe these phenomena and this thesis investigates several possibilities for new models, both full theories and effective frameworks.   The values of the parameters in a model are dependent on the energy scale and we say that the parameters run. The exact behavior of the running depends on the model and it provides a signature of the model. For a model defined at high energies it is necessary to run the parameters down to the electroweak scale in order to perform a comparison to the known values of observed quantities. In this thesis, we discuss renormalization group running in the context of extra dimensions and we provide an upper limit on the cutoff scale. We perform renormalization group running in two versions of a non-supersymmetric SO(10) model and we show that the SM parameters can be accommodated in both versions. In addition, we perform the running for the gauge couplings in a large set of radiative neutrino mass models and conclude that unification is possible in some of them.   The Higgs boson provides new possibilities to study physics beyond the SM. Its properties have to be tested with extremely high precision before it could be established whether the particle is truly the SM Higgs boson or not. In this thesis, we perform Bayesian parameter inference and model comparison. For models where the magnitude of the Higgs couplings is varied, we show that the SM is favored in comparison to all other models. Furthermore, we discuss lepton flavor violating processes in the context of the Zee model. We find that these can be sizeable and close to the experimental limits. / <p>QC 20170221</p>
20

Massive Neutrinos: Phenomenological and Cosmological Consequences / Neutrinos Massivos: Consequências fenomenológicas e cosmológicas

Gonzalez, Yuber Ferney Perez 01 December 2017 (has links)
The XX century witnessed the quantum and relativistic revolutions in physics. The development of these two theories, namely, Quantum Mechanics and Relativity, was the inception of many crucial discoveries and technological advances. Among them, one stands out due to its uniqueness, the neutrino discovery. However, several neutrino properties are still obscure. Neutrinos are the only fundamental particles whose nature is currently unknown. Such fermions can either be different from their antiparticles, i.e., Dirac fermions, or be their own antiparticles, that is, Majorana fermions. On the other hand, the smallness of neutrino masses is a problem seemingly related to the neutrino nature; thus, as essential task consists in addressing the phenomenologically viable models in both cases. Furthermore, it is important to search for other physical process in which the neutrino nature may manifest through different experimental signatures. A rather difficult but promising method corresponds to the detection of the cosmic neutrino background, viz. neutrinos which are relics from the Big Bang. Previous works have shown that detection rates for Dirac and Majorana neutrinos can give different results. Nevertheless, this distinction was obtained considering the Standard Model framework only. Therefore, it is important to understand the consequences of having Non-Standard Interactions contributing to the detection of neutrinos from the cosmic background. Another remarkable relic predicted by Cosmology is the unidentified Dark Matter, composing ~25% of the Universe. All searches regarding the Weakly Interacting Massive Particle, one of the principal candidates for Dark Matter, have given negative results; this has compelled experiments to increase their sensitivity. Notwithstanding, neutrinos may stand in the way of such experimental searches given that they may constitute an irreducible background. In this thesis, we will address these three different phenomena, neutrino mass models, detection of the cosmic neutrino background and the neutrino background in Dark Matter searches, by considering the different characteristics in each case. In the study of neutrino mass models, we will consider models for both Majorana and Dirac neutrinos; specifically, we will probe the neutrinophilic two-Higgs-doublet model. Regarding the detection of relic neutrinos, we will analyse the consequences of the existence of the beyond Standard Model physics in the capture rate by tritium. Finally, we will scrutinize the impact of neutrinos in Direct Detection WIMP searches, by considering Standard Model plus additional interactions in the form of simplified models. / Ao longo do século XX testemunhamos as revoluções quântica e relativista que aconteceram na Física. O desenvolvimento da Mecânica quântica e da teoria da relatividade foi o prelúdio de inúmeras descobertas e avanços tecnológicos fundamentais; em particular, a descoberta dos neutrinos. No entanto, a sua total compreensão ainda é um mistério para a física de partículas. Entendidos como partículas fermiônicas fundamentais, os neutrinos possuem sua natureza desconhecida. Podendo ser diferentes de suas antipartículas, denominadas férmions de Dirac, ou também podendo ser as suas próprias antipartícula, sendo conhecidas como férmions de Majorana. Por outro lado, o valor de sua massa continua sendo um problema em aberto, supostamente relacionado à sua natureza. Portanto, é importante estudarmos modelos fenomenológicos viáveis para as duas naturezas possíves dos neutrinos. Além disso, é necessário procurar outros processos físicos cujos resultados experimentais sejam distintos de acordo com a natureza do neutrino. Um método bastante difícil, mas promissor, corresponde à detecção do fundo de neutrinos cósmicos, isto é, os neutrinos relíquia do Big Bang. Análises prévias mostraram que as taxas de detecção para neutrinos de Dirac e de Majorana resultam em valores distintos. Porém, este resultado foi obtido supondo como base o Modelo Padrão; assim, é crucial entender as possíveis consequências da existência de interações desconhecidas na detecção dos neutrinos da radiação cósmica de fundo. Outra relíquia notável prevista pela Cosmologia é a desconhecida Matéria Escura, que compõe ~25% do Universo. Todas as buscas por WIMPs (do inglês Weakly Interactive Massive Particles), um dos principais candidatos a Matéria Escura, tem dado resultados negativos. Isto tem forçado a criação de experimentos cada vez mais sensíveis. Contudo, os neutrinos poderão ser um obstáculo nessas buscas experimentais, pois estes convertir-se-ão em um fundo irredutível. Na presente tese, abordaremos estes três fenômenos diferentes, modelos de massa para os neutrinos, a detecção do fundo de neutrinos cósmicos e o fundo de neutrinos em experimentos de detecção direta de Matéria Escura, considerando as distintas características em cada caso. No estudo dos modelos de massa para os neutrinos consideraremos modelos para neutrinos de Majorana e Dirac; exploraremos modelos neutrinofílicos com dois dubletos de Higgs. Enquanto à detecção dos neutrinos relíquia, analisaremos as consequências da presença de física além do Modelo Padrão na taxa de captura pelo trítio. Finalmente, examinaremos o impacto dos neutrinos em experimentos de detecção direta de WIMPs, supondo as interações do Modelo Padrão junto com interações adicionais na forma de modelos simplificados.

Page generated in 0.0649 seconds