• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A PFC Power Supply with Minimized Energy Storage Components and a New Control Ttechnique for Cascaded SMPS

Frost, Damien F. 04 December 2012 (has links)
This Master of Applied Science thesis proposes a new design of low power, power factor corrected (PFC), power supplies. By lifting the hold up time restriction for devices that have a battery built in, the energy storage elements of the converter can be reduced, permitting a small and inexpensive power converter to be built. In addition, a new control technique for controlling cascaded converters is presented, named duty mode control (DMC). Its advantages are shown through simulations. The system was proven using a prototype developed in the laboratory designed for a universal ac input voltage (85 - 265VRMS at 50 - 60Hz) and a 40W output at 12V. It consisted of two interleaved phases sensed and digitally controlled on the isolated side of the converter. The prototype was able to achieve a power factor of greater than 0.98 for all operating conditions, and input harmonic current distortion well below any set of standards.
2

A PFC Power Supply with Minimized Energy Storage Components and a New Control Ttechnique for Cascaded SMPS

Frost, Damien F. 04 December 2012 (has links)
This Master of Applied Science thesis proposes a new design of low power, power factor corrected (PFC), power supplies. By lifting the hold up time restriction for devices that have a battery built in, the energy storage elements of the converter can be reduced, permitting a small and inexpensive power converter to be built. In addition, a new control technique for controlling cascaded converters is presented, named duty mode control (DMC). Its advantages are shown through simulations. The system was proven using a prototype developed in the laboratory designed for a universal ac input voltage (85 - 265VRMS at 50 - 60Hz) and a 40W output at 12V. It consisted of two interleaved phases sensed and digitally controlled on the isolated side of the converter. The prototype was able to achieve a power factor of greater than 0.98 for all operating conditions, and input harmonic current distortion well below any set of standards.

Page generated in 0.0752 seconds