• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 8
  • 5
  • 2
  • 1
  • Tagged with
  • 63
  • 63
  • 28
  • 21
  • 21
  • 16
  • 16
  • 14
  • 13
  • 13
  • 13
  • 12
  • 12
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A study on laser weldability improvement of newly developed Haynes 282 superalloy

Osoba, Lawrence January 2012 (has links)
Haynes alloy 282 is a new gamma prime (γ’) precipitation strengthened nickel-base superalloy developed for high temperature applications in land-based and aero turbine engines. Joining is a crucial process both during the manufacturing of new components and repair of service-damaged turbine parts. Unfortunately, the new superalloy cracks during laser beam welding (LBW), which is an attractive technique for joining superalloys components due to its low heat input characteristic that preclude the geometrical distortion of welded components. This research is therefore initiated with the goal of studying and developing an effective approach for preventing or minimizing cracking during LBW of the new superalloy Haynes 282. Careful and detailed electron microscopy and spectroscopy study reveal, for the first time, the formation of sub-micron grain boundary M5B3 particles, in the material. Microstructural study of welded specimens coupled with Gleeble thermo-mechanical physical simulations shows that the primary cause of weld heat affected zone (HAZ) cracking in the alloy is the sub-solidus liquation reaction of intergranular M5B3 borides in the material. Further weldability study showed that the HAZ liquation cracking problem worsens with reduction in welding heat input, which is normally necessary to produce the desired weld geometry with minimum distortion. In order to minimize the HAZ cracking during low heat input laser welding, microstructural modification of the alloy by heat treatment at 1080 - 1100oC has been developed. The pre-weld heat treatment minimizes cracking in the alloy by reducing the volume fraction of the newly identified M5B3 borides, while also minimizing non-equilibrium grain boundary segregation of boron liberated during dissociation of the boride particles. Further improvement in resistance to cracking was produced by subjecting the material to thermo-mechanically induced grain refinement coupled with a pre-weld heat treatment at 1080oC. This approach produces, for the first time, crack-free welds in this superalloy, and the benefit of this procedure in preventing weld cracking in the new material is preserved after post-weld heat treatment (PWHT), as additional cracking was not observed in welded specimens subjected to PWHT.
12

Microstructural Evolution and Deformation Mechanisms in Nickel-Base SuperAlloys

Song, Hyo-Jin 06 December 2010 (has links)
No description available.
13

Phase-field simulations of the precipitation kinetics and microstructure development in nickel-based superalloys

Yenusah, Caleb O 13 May 2022 (has links)
The continual research and development of nickel-based superalloys is driven by the global demand to improve efficiency and reduce emissions in the aerospace and power generation industries. Integrated Computational Material Engineering (ICME) is a valuable tool for reducing the cost, time, and resources necessary for the development and optimization of the mechanical properties of materials. In this work, an ICME approach for understanding the microstructure development and optimizing the mechanical properties in nickel-based superalloys is employed. Most nickel-based superalloys are precipitate strengthened by either the γ’ phase, γ” phase, or both. Therefore, understanding the precipitation kinetics and morphological evolution of these phases is critical for evaluating their hardening effects during heat treatment and degradation of the microstructure during high temperature service. To this end, a phase-field model has been developed to analyze the nucleation, growth and coarsening kinetics during isothermal and non-isothermal aging conditions. Utilizing the phase-field model, the γ” phase microstructure development and its coherency strengthening effect in Inconel 625 is studied. A novel multistage aging strategy to optimize the γ” phase strengthening effect and reduce aging times for Inconel 625 is proposed. Secondly, the coarsening kinetic and microstructure development of γ’ strengthening phase in nickel-based superalloys is studied, with the goal of understanding the effect of elastic inhomogeneity on the microstructure evolution at high volume fractions of the γ’ phase. The result shows deviation of the coarsening kinetics from the classical Lifshitz-Slyozov-Wagner (LSW) due to the effect of elastic inhomogeneity, highlighting the need for incorporating elastic energy into coarsening theories.
14

Oxidation and degradation of nickel-base alloys at high temperatures / Oxidation och degradering av nickel-baslegeringar vid höga temperaturer

Palmert, Frans January 2009 (has links)
<p>This master’s thesis work is a study of oxidation and degradation of nickel-base alloys at high temperatures. The materials studied are designed for use in critical gas turbine components such as turbine blades and vanes. Some of the alloys are used today, whereas others have not yet entered commercial application. In order to maximize the efficiency of gas turbines, there is an ambition to maximize the operating temperatures. There is therefore a demand for materials which can withstand the damage mechanisms active at high temperatures. Among these damage mechanisms are oxidation and microstructural degradation.</p><p>To investigate the oxidation resistance of 7 different monocrystalline and polycrystalline alloys, samples have been exposed isothermally in still air at temperatures between 850 and 1000°C, for exposure times of up to 20000h. Two of the alloys were also exposed cyclically at 950°C. Oxidation during the heat treatment resulted in significant weight changes, which were measured after each cycle for cyclically exposed samples and after completed heat treatment for isothermally exposed samples. The weight change data was used to evaluate the relative oxidation resistance of the alloys. The ranking of the alloys with respect to oxidation resistance was generally in agreement with the oxidation resistance predicted by a simple consideration of the Cr and Al contents of the alloys. However, the single-crystal alloy PWA1483 displayed better oxidation resistance than predicted from its chemical composition.</p><p>Metallographic analysis of the samples indicated that the oxide scales formed consisted of several different types of oxides. The oxide scales were mainly composed of Cr2O3 and Al2O3. Fragments of the oxide scales spalled off, primarily during cooling but also in some cases during the long-term heat treatments. Spalling of the oxide scale accelerated the oxidation process, since the ability of the oxide scale to impede diffusion decreased with its decrease in thickness. Oxidation caused depletion of Al and thereby local dissolution of the aluminum-rich γ′ particles, which are of vital importance to the mechanical properties of the material. A γ′ depleted zone thereby formed underneath the oxide scale. In this zone nitrides and needle-like particles, believed to be topologically close packed μ phase, precipitated during heat treatment. Recrystallization in the depletion zone was observed in some of the monocrystalline materials. MC carbides (M=metal) present in the virgin material decomposed during heat treatment and M23C6 carbides were formed. The γ′ particles coarsened during heat treatment, which resulted in decreased hardness. The hardness decreased with exposure temperature up to 950°C, as expected due to the increased coarsening rate. At 1000°C an unexpected increase in hardness was observed for all sample materials except one. A possible explanation for this hardness increase is redistribution of γ′, by dissolution of γ′ during heat treatment and reprecipitation during cooling as much finer particles. A fine dispersion of γ′ is expected to contribute more to the hardness than a corresponding volume of γ′ in the form of larger particles. For some of the sample series, clear correlations between hardness and γ′ particle size or exposition time were found. These relationships could potentially be used to estimate the exposure temperature of service-exposed material.</p><p>A numerical model was implemented in Matlab to describe the process of oxide growth and spalling, cycle by cycle. The model was successfully adapted to experimental data from the cyclic oxidation measurements. The general applicability of the model to cyclic oxidation data at different temperatures and cycle frequencies was not investigated. At long times of cyclic exposure, the net weight loss of the samples could be well approximated as a linear function of the number of cycles. However, during the last few cycles the amount of oxide spalled in each cycle suddenly decreased. This change in spallation behavior was mainly observed for the samples cooled in air between every cycle and to a much smaller extent for the samples cooled in water. The proposed explanation is that spalling occurred preferentially at a weak subscale interface and that the spalling propensity decreased with decreasing area of this weak interface. The deviating results of the last few cycles were not included in the modeling of the cyclic oxidation process.</p>
15

Modelling of constitutive and fatigue behaviour of a single-crystal nickel-base superalloy

Leidermark, Daniel January 2010 (has links)
<p>In this licentiate thesis the work done in the project KME410 will be presented. The overall objective of this project is to evaluate and develop tools for designing against fatigue in single-crystal nickel-base superalloys in gas turbines. Experiments have been done on single-crystal nickel-base superalloy specimens in order to investigate the mechanical behaviour of the material. The constitutive behaviour has been modelled and verified by simulations of the experiments. Furthermore, the  microstructural degradation during long-time ageing has been investigated with  respect to the component’s yield limit. The effect has been included in the  constitutive model by lowering the resulting yield limit. Finally, the fatigue crack  initiation of a component has been analysed and modelled by using a critical plane approach.</p><p>This thesis is divided into three parts. In the first part the theoretical framework, based upon continuum mechanics, crystal plasticity and the critical plane approach, is derived. This framework is then used in the second part, which consists of three included papers. Finally, in the third part, details are presented of the used  numerical procedures.</p>
16

Modelling of constitutive and fatigue behaviour of a single-crystal nickel-base superalloy

Leidermark, Daniel January 2010 (has links)
In this licentiate thesis the work done in the project KME410 will be presented. The overall objective of this project is to evaluate and develop tools for designing against fatigue in single-crystal nickel-base superalloys in gas turbines. Experiments have been done on single-crystal nickel-base superalloy specimens in order to investigate the mechanical behaviour of the material. The constitutive behaviour has been modelled and verified by simulations of the experiments. Furthermore, the  microstructural degradation during long-time ageing has been investigated with  respect to the component’s yield limit. The effect has been included in the  constitutive model by lowering the resulting yield limit. Finally, the fatigue crack  initiation of a component has been analysed and modelled by using a critical plane approach. This thesis is divided into three parts. In the first part the theoretical framework, based upon continuum mechanics, crystal plasticity and the critical plane approach, is derived. This framework is then used in the second part, which consists of three included papers. Finally, in the third part, details are presented of the used  numerical procedures.
17

Non-destructive Electrical Characterization of Controlled Waspaloy Microstructures

G. Kelekanjeri, V. Siva Kumar 06 April 2007 (has links)
In this research, controlled Waspaloy microstructures were produced with the objective of studying microstructural evolution in this alloy via electrically-based ac/dc non-destructive techniques. Correlations were developed between electrical measurements and alternate characterization techniques such as Ultra Small Angle X-ray Scattering (USAXS), Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) to gain a complete understanding of the microstructural transformations and the associated mechanisms. Three different sets of controlled microstructures were produced in this research. In Set I microstructures, matrix (gamma) grain sizes of 13, 52 and 89 micrometers were obtained after solution-treatments at 1045 and 176;C, 1090 and 176;C and 1145 and 176;C respectively. A vacancy stabilization treatment at 1045 and 176;C followed after which, the specimens were aged at 800 and 176;C for times ranging from 0.1 hrs to 100 hrs to vary the gamma prime precipitate size distribution. In Sets II and III, the solution-treatment was only conducted at 1145 and 176;C, with the stabilization treatment conducted only in Set II. Subsequently, aging experiments were conducted at 725 and 176;C (or 700 and 176;C in Set II), 800 and 176;C and 875 and 176;C for times up to 100 hrs. DC four-point probe resistivity of specimens increased to a maximum upon initial aging from the solution-treated condition and showed a decreasing trend thereafter with successive aging. This, in addition to complementary evidence from SEM and USAXS, led to the conclusion that gamma prime nucleation-growth was complete by the time the resistivity maximum was observed. Resistivity variations that ensued upon successive aging after the maximum were attributed to microstructural/compositional changes due to gamma prime coarsening. The height of the maximum decreased drastically with increase in aging temperature from 725 and 176;C to 800 and 176;C, while the resistivity did not increase from the solution-treated condition upon aging at 875 and 176; C. Coarsening studies based on USAXS analysis indicated an LSW type volume diffusion mechanism of coarsening in Waspaloy, with an average coarsening rate constant of 3.25x10-29 [m3/sec] for Set I specimens aged at 800 and 176;C. Analytical and Finite Element (FE) models of two-probe impedance and dc four-point probe resistivity methods were developed to gain insight into the measured response and the accurate determination of material properties. AFM-based localized electrical examination of sub-grain Waspaloy microstructures was successfully conducted using electrostatic force microscopy (EFM), scanning Kelvin probe microscopy (SKPM) and current-AFM (I-AFM) electrical modes. I-AFM experiments revealed that the conductivity of the gamma prime phase was lower than that of the gamma phase.
18

A study of laser-arc hybrid weldability of nickel-base INCONEL 738 LC superalloy

Ola, Oyedele 08 1900 (has links)
Precipitation strengthened nickel-base superalloys, such as IN 738, are very difficult to weld by fusion welding techniques due to their high susceptibility to heat-affected zone (HAZ) intergranular liquation cracking. An improvement in weldability could be realized by the deployment of innovative welding processes and/or the modification of the materials’ microstructural characteristics. Laser-arc hybrid welding is a relatively new welding process that appears to possess great potentials for joining the difficult-to-weld nickel-base superalloys. The research described in this Ph.D. dissertation was initiated to perform a systematic and comprehensive study of the cracking susceptibility of nickel-base IN 738 superalloy welds made by laser-arc hybrid welding process, and how to minimize it by using a combination of pre-weld microstructural modification and the application of various welding filler alloys. Laser-arc hybrid welding produced a desirable weld geometry in IN 738 Superalloy. Cracking did not occur exclusively in the fusion zone. Analysis of the fusion zone material using EPMA, SEM, TEM and EBSD revealed elemental partitioning pattern, the presence of secondary solidification reaction constituents and the grain structure of the fusion zone. Non-equilibrium liquation of various second phases that were present in the alloy prior to welding contributed to intergranular liquation in the HAZ that consequently resulted in extensive HAZ intergranular cracking. A very significant reduction in HAZ intergranular liquation cracking was achieved by the use of an industrially deployable and effective pre-weld thermal processing procedure developed during this research work. This novel procedure, designated as FUMT, was developed on the basis of the control of both boride formation and intergranular boron segregation in the pre-weld material. Propensity for HAZ intergranular liquation cracking in the weldments was also observed to vary depending on the Al+Ti+Nb+Ta concentration of the weld metal produced by different filler alloys, which can be attributed to variation in the extent of precipitation hardening in the weld metals. The newly developed FUMT treatment procedure, coupled with the selection of an appropriate type of filler alloy, is effective in reducing HAZ intergranular cracking both during laser-arc hybrid welding and during post-weld heat treatment (PWHT) of the laser-arc hybrid welded IN 738 superalloy.
19

A study of laser-arc hybrid weldability of nickel-base INCONEL 738 LC superalloy

Ola, Oyedele 08 1900 (has links)
Precipitation strengthened nickel-base superalloys, such as IN 738, are very difficult to weld by fusion welding techniques due to their high susceptibility to heat-affected zone (HAZ) intergranular liquation cracking. An improvement in weldability could be realized by the deployment of innovative welding processes and/or the modification of the materials’ microstructural characteristics. Laser-arc hybrid welding is a relatively new welding process that appears to possess great potentials for joining the difficult-to-weld nickel-base superalloys. The research described in this Ph.D. dissertation was initiated to perform a systematic and comprehensive study of the cracking susceptibility of nickel-base IN 738 superalloy welds made by laser-arc hybrid welding process, and how to minimize it by using a combination of pre-weld microstructural modification and the application of various welding filler alloys. Laser-arc hybrid welding produced a desirable weld geometry in IN 738 Superalloy. Cracking did not occur exclusively in the fusion zone. Analysis of the fusion zone material using EPMA, SEM, TEM and EBSD revealed elemental partitioning pattern, the presence of secondary solidification reaction constituents and the grain structure of the fusion zone. Non-equilibrium liquation of various second phases that were present in the alloy prior to welding contributed to intergranular liquation in the HAZ that consequently resulted in extensive HAZ intergranular cracking. A very significant reduction in HAZ intergranular liquation cracking was achieved by the use of an industrially deployable and effective pre-weld thermal processing procedure developed during this research work. This novel procedure, designated as FUMT, was developed on the basis of the control of both boride formation and intergranular boron segregation in the pre-weld material. Propensity for HAZ intergranular liquation cracking in the weldments was also observed to vary depending on the Al+Ti+Nb+Ta concentration of the weld metal produced by different filler alloys, which can be attributed to variation in the extent of precipitation hardening in the weld metals. The newly developed FUMT treatment procedure, coupled with the selection of an appropriate type of filler alloy, is effective in reducing HAZ intergranular cracking both during laser-arc hybrid welding and during post-weld heat treatment (PWHT) of the laser-arc hybrid welded IN 738 superalloy.
20

Life modeling of notched CM247LC DS nickel-base superalloy

Moore, Zachary Joseph 19 May 2008 (has links)
Directionally solidified (DS) nickel-base superalloys are used in high temperature gas turbine engines because of their high yield strength at extreme temperatures and strong low cycle fatigue (LCF) and creep resistance. Costly inspecting, servicing, and replacing of damaged components has precipitated much interest in developing models to better predict service life. Turbine blade life modeling is complicated by the presence of notches, dwells, high temperatures and temperature gradients, and highly anisotropic material behavior. This work seeks to develop approaches for predicting the life of hot sections of gas turbines blade material CM247LC DS subjected to LCF, dwells, and stress concentrations while taking into consideration orientation and notch effects. Experiments were conducted on an axial servo-hydraulic MTS® testing machine. High temperature LCF tests were performed on smooth and notched round-bar specimens in both longitudinal and transverse orientations with and without dwells. Experimental results were used to develop and validate an analytical life prediction model. An analytical model based on a multiaxial Neuber approach predicts the local stress-strain response at a notch and other geometric stress concentrations. This approach captures anisotropy through a multiaxial generalization of the Ramberg-Osgood relation using a Hill's type criterion. The elastic notch response is determined using an anisotropic elastic finite element analysis (FEA) of the notch. The limitations of the simpler analytical life-modeling method are discussed in light of FEA using an anisotropic elastic-crystal viscoplastic material model. This life-modeling method provides a quick alternative to time demanding elastic-plastic FEA allowing engineers more design iterations to improve reliability and service life.

Page generated in 0.0492 seconds