Spelling suggestions: "subject:"niosomes"" "subject:"elaiosome""
1 |
Niosome and Microparticle Encapsulation of Antimicrobial Agents for Targeting Hair FolliclesKirk, Laura I. January 2008 (has links)
No description available.
|
2 |
The Characterization of Non-Ionic Surfactant Vesicles: A Release Rate Study for Drug DeliveryDearborn, Kristina Ok-Hee 07 April 2006 (has links)
Drug delivery methods for the treatment of brain tumor cells have been both inefficient and potentially dangerous for cancer patients. Drug delivery must be done in a controlled manner so that the effective amount of medication is delivered to the patient and ensure over-dosage does not cause adverse side reactions in the patient. The focus of this investigation is to design a drug delivery system that would allow for site-specific administration of the drug, protection of the drug from the surrounding environment, and controlled sustained release of the drug. We have proposed a model that incorporates a niosome, which is a non-ionic surfactant vesicle, within a biodegradable polymer hydrogel. The drug is encapsulated in the niosome, and the niosome is embedded within a three-dimensional hydrogel network. It is therefore critical that the release rate of the drug from the niosome be studied. This investigation provides information about the release rate and behavior of the drug within the niosome as it is placed in a semi-permeable membrane. The niosome and dye solution in the cellulose membrane are placed in contact with water or PBS. Intensity measurements are taken using fluorescence spectrometry, and the readings are converted to concentration and moles values. The release rates of the dye from of the niosome and across the membrane are studied as the concentration data is collected over time. The results indicate that most of the niosomes will release their dye within ten hours. The water will create instability in the niosomes, while the PBS solution will maintain the stability of the niosomes. The concentration that diffuses across the cellulose membrane will steadily increase and can be predicted well by a simple diffusion model. We hope to use the information provided in this study to continue to design a drug delivery method that will stabilize the niosomes and allow for the maximum control over the release rate of the drug.
|
3 |
Smart Packaging: A Novel Technique For Localized Drug Delivery For Ovarian CancerWilliams, Eva Christabel 01 January 2012 (has links)
Localized drug delivery is emerging as an effective technique due to its ability to administer therapeutic concentrations and controlled release of drugs to cancer sites in the body. It also prevents the contact of harsh chemotherapy drugs to healthy regions in the body that otherwise would become exposed to current treatments.
This study reports on a model chemotherapy drug delivery system comprising non-ionic surfactant vesicles (niosomes) packaged within a temperature-sensitive chitosan network. This smart packaging, or package-within-a package system, provides two distinct advantages. First, the gel prevents circulation of the niosomes and maintains delivery in the vicinity of a tumor. Secondly, the chitosan network protects the niosomes against fluctuations in tonicity, which affects delivery rates. Tonicity is the sum of the concentrations of the solutes which have the capacity to exert an osmotic force across the membrane. Release rates were monitored from both bare niosomes alone and niosome-embedded, chitosan networks. It was observed that chitosan networks prolonged delivery from 100 hours to 55 days in low ionic strength environment and pH conditions similar to a tumor site. The primary effect of chitosan is to add control on release time and dosage, and stabilize the niosomes through a high ionic strength surrounding that prevents uncontrolled bursting of the niosomes. Secondary factors include cross-link density of the chitosan network, molecular weight of the individual chitosan polymers, dye concentration within the niosomes, and the number density of niosomes packaged within the chitosan network. Each of these factors can be altered to fine-tune release rates. Release rate experiments were conducted with 5,6-carboxyfluorescein, a fluorescent dye and chemotherapeutics paclitaxel and carboplatin. In vitro studies showed a preferential affinity of the smart packaged system to ovarian carcinoma cell line OV2008 as compared to normal epithelial cell lines of Ilow and MCC3. Further, feasibility of the drug delivery system was evaluated in vivo. Toxicity studies revealed that the system was non-toxic and feasible in vivo. The final outcome of this study includes tuning of the variables mentioned above that will contribute to the development of low cost and improved methods for drug delivery with application to intracavitary ovarian cancer treatment and other types of cancer
|
4 |
Tunable Nano-Delivery System for Cancer Treatment: A New Approach for Targeted Localized Drug DeliveryFalahat, Rana 28 June 2016 (has links)
Localized drug delivery systems have been widely studied as potential replacements for conventional chemotherapy with the capability of providing sustained and controlled drug release in specific targeted sites. They offer numerous benefits over conventional chemotherapy such as enhancing the stability of embedded drugs and preserving their anticancer activity, providing sustained and controlled drug release in the tumor site, reducing toxicity and diminishing subsequent side effects, minimizing the drug loss, averting the need for frequent administrations, and minimizing the cost of therapy.
The aim of this study is to develop a localized drug delivery system with niosomes embedded in a chitosan hydrogel with targeting capabilities. The incorporation of niosomes into a chitosan hydrogel has several advantages over each individually being used. First, embedding niosomes in a chitosan hydrogel can yield control over drug release especially for small molecule drugs. Second, chitosan hydrogel may improve the release time and dosage of drugs from niosomes by protecting them with an extra barrier, resulting in tunable release rates. Third, as a localized delivery system, chitosan hydrogels can prevent the migration of niosomes away from the targeted tumor sites. Finally, chitosan has mucoadhesive property which can be used in the targeting of the tumor cells with the mucin over expression.
To enhance the specific targeting, the capacity of chitosan to target MUC1 overexpression in cancer cells will be analyzed. Similarly, the incorporation of chlorotoxin in this system will be achieved and evaluated. Chlorotoxin, a 36-amino acid peptide, is purified from Leiurus quinquestriatus scorpion venom with a distinct characteristic of binding preferentially to neuroectoderma tumors such as glioma, but not to normal tissue.
The overexpression of MUC1, a mucin antigen, in certain cancer cells has been used as an attractive therapeutic target in the design of a drug delivery system consisting of chitosan with a distinct mucoadhesive property. To determine the level of MUC1expression in different cell lines, Cell based Enzyme Linked Immunosorbent Assay (Cell ELISA) was developed for the first time.
Attenuated Total Reflectance- Fourier Transform Infra-Red (ATR-FTIR) Spectroscopy is used to investigate the possible molecular interaction between chlorotoxin and glioma cells. This study presents a new approach in monitoring the biochemical and biophysical changes in glioma cells after being exposed to CTX. In addition to characterizing the signature spectra of CTX and glioma cells, we evaluated the differences in biochemical compositions of the spectra of the glioma cells treated with and without CTX over different incubation time periods.
The results indicate that the proposed localized drug delivery system with the distinct tumor targeting features and extended release profiles would tune and control the specific delivery of chemotherapeutics in tumor sites.
|
5 |
Structure, Spectroscopy, Stability, and Metal Exchange among M(III) Complexes Bearing alpha-Hydroxy AcidsWarmin, Mary 02 June 2023 (has links)
No description available.
|
Page generated in 0.0381 seconds