871 |
Sex Differences in Cardiac and Cerebral Damage after Hypovolemic Cardiac ArrestSemenas, Egidijus January 2011 (has links)
Resuscitation from haemorrhagic shock and the subsequent circulatory arrest remains a major clinical challenge in the care of trauma patients. Numerous experimental studies in sexually mature animals have shown a gender dimorphism in response to trauma and haemorrhagic shock. The first study was designed to evaluate sex differences in outcome after resuscitation from hypovolemic circulatory arrest. We intended to examine innate sex differences, and chose to study sexually immature animals. The study showed that cerebral cortical blood flow was greater, blood-brain-barrier was better preserved and neuronal injury was smaller in female as compared to male piglets. The second study demonstrated that female sex was associated with enhanced haemodynamic response, cardioprotection, and better survival. This cardioprotective effect was observed despite comparable estradiol and testosterone levels in male and female animals, indicating an innate gender-related cardioprotection. In both studies (I and II) female sex was associated with a smaller increase in the cerebral expression of inducible and neuronal nitric oxide synthase (iNOS and nNOS). Thus in the study III we tested the hypothesis that exogenously administered 17β-estradiol (E2) could improve neurological outcome by NOS modulation. The results showed that compared with the control group, animals in the E2 group exhibited a significantly smaller increase in nNOS and iNOS expression, a smaller blood-brain-barrier disruption and a mitigated neuronal injury. There was also a significant correlation between nNOS and iNOS levels and neuronal injury. A hypothesis if female-specific cardioprotection may be attributed to a smaller NOS activity was tested in study IV. The animals received methylene blue (MB) during CPR, but were otherwise treated according to the same protocol as studies I-II. The female-specific cardioprotection could be attributed to a smaller NOS activity, but NOS inhibition with MB did not improve survival or myocardial injury, although it abated the difference between the sexes.
|
872 |
Cardiovascular function in animal models of metabolic syndrome and type 2 diabetes : the role of inducible nitric oxide synthase (iNOS)Song, Dongzhe 11 1900 (has links)
Activation of inducible nitric oxide synthase (iNOS) and oxidative stress have been shown to be associated with compromised cardiovascular function in streptozotocin (STZ)-induced type 1 diabetes. The aim of the project is to investigate cardiovascular abnormalities in a rat model of type 2 diabetes (Zucker diabetes fatty or ZDF rats) and two models of metabolic syndrome (fructose-fed rats and Zucker obese rats), and to provide direct evidence linking iNOS and oxidative stress to abnormal cardiovascular function in these disorders. Blood pressure, cardiac contractility, cardiac index, regional flow, vascular resistance and venous tone were measured in diseased as well as normal rats. Biochemical analyses such as activities of iNOS, immunostaining of iNOS and western-blot analysis of iNOS in the heart tissue were carried out. The results showed that cardiac contractile response to dobutamine was compromised in the ZDF rats, and this was associated with increased myocardial protein expression as well as activity of iNOS. The formation of peroxynitrite was increased in the heart tissue of the ZDF rats. Selective inhibition of iNOS by 1400W (N-3-aminomethyl-benzyl-acetamidine) did not alter responses to dobutamine in the control rats, but augmented the contractile effects of dobutamine in the diabetic rats. The regional blood flow was altered in the ZDF rats, and iNOS played a negligible role in regulating regional flow in the ZDF rats. Although venous response to noradrenaline was also altered in the Zucker obese rats, NOS may not be involved in venous tone regulation. Anti-oxidative treatment with N-acetylcysteine inhibited the development of insulin resistance, blood pressure elevation and the increase of 8-isoprostane formation in the fructose-fed rats. We conclude that heart function is compromised and regional blood flow is altered in the ZDF rats. Activation of iNOS plays an important role in suppressing heart dysfunction but does not affect regional blood flow. In Zucker obese rats with metabolic syndrome, iNOS may not be involved in changes of venous function. Oxidative stress is associated with both abnormality of heart dysfunction in type 2 diabetes (by formation of peroxynitrite due to iNOS activation) and development of hypertension and insulin resistance in metabolic syndrome.
|
873 |
Modulation of arterial stiffness by angiotensin receptors and nitric oxide in the insulin resistance syndromeBrillante, Divina Graciela, Clinical School - St George Hospital, Faculty of Medicine, UNSW January 2008 (has links)
The insulin resistance syndrome [INSR] is associated with increased cardiovascular risk and affects up to 25% of the Australian population. The mechanism underlying the relationship between the INSR and increased cardiovascular risk is controversial. We postulated that perturbations in the renin-angiotensin system [RAS] and endothelium-derived NO may be implicated in the development of early vascular changes in the INSR. Repeated measurements of arterial stiffness [using digital photoplethysmography] and haemodynamic parameters in response to vasoactive medications were used to demonstrate the functional expression of angiotensin II [Ang II] receptors and NO synthase [NOS]. Ang II acts via two main receptor sub-types: the Ang II type 1 [AT1] and Ang II type 2 [AT2] receptors. The AT1 receptor is central to the development of arterial stiffness and endothelial dysfunction. The role of AT2 receptors in humans is controversial but is postulated to counter-act AT1 receptor mediated effects in diseased vascular beds. We demonstrated increased AT1 and AT2 receptor-mediated effects in small to medium-sized arteries of subjects with early INSR [Chapter 6]. In addition, functional expression of AT2 receptors in adult insulin resistant humans [Chapter 5], but not in healthy volunteers [Chapter 4] was demonstrated. AT1 receptor blockade in subjects with early INSR resulted in improvements in vascular function, with a consequent functional down-regulation of AT2 receptors [Chapter 7]. Functional NOS expression was demonstrated to be increased in subjects with early INSR compared with healthy controls [Chapter 6]. This was postulated to be a homeostatic response to counteract early vascular changes in subjects with early INSR. AT1 receptor blockade in these subjects reduced functional NOS expression [Chapter 8]. In conclusion, patients with early INSR represent a model of early disease where early intervention may be able to reverse the process incited by the initial exposure to multiple cardiovascular risk factors. Early vascular changes in these individuals are mediated at least in part, by increased AT1 receptor activity and/or expression, and may be detected by changes in arterial stiffness indices and non-invasive vascular reactivity studies. There is a compensatory increase in AT2 receptor and NOS expression/activity to counter-act these vascular changes.
|
874 |
Nitric oxide in airway inflammationLiu, Jia, Clinical School - Prince of Wales Hospital, Faculty of Medicine, UNSW January 2009 (has links)
Exhaled breath condensate (EBC) is a non-invasive method of investigating airway inflammation associated with nitric oxide (NO) and the metabolites nitrite/nitrates (NOx) in diseases such as chronic obstructive pulmonary disease (COPD), but some of the variables affecting the results are unknown. It was hypothesised that 1) EBC would be influenced by lung volumes and the type of EBC collection device; 2) fractional exhaled NO (FENO) and EBC NOx in COPD patients would be altered by smoking and glucocorticosteroids (GCS); 3) cigarette smoke could contribute to the EBC NOx concentration while it may also decrease FENO indirectly by converting airway NO to NOx. It was found that EBC volume was significantly correlated with both tidal volume and minute volume. Comparing four EBC collection devices demonstrated greater efficiency with the ECoScreen?? than siliconised glass tubes or RTube?? but it gave factitiously high NOx levels. Total EBC protein levels over a 10-minute collection were significantly higher using the ECoScreen?? than either glass or RTube?? devices. A cross-sectional study of 96 COPD patients and 80 age-matched control subjects demonstrated that FENO levels in COPD patients were significantly higher than normal subjects when comparing either the combined groups or appropriate two subgroups: ex-smokers and smokers. GCS treatment demonstrated no significant effect on either FENO levels or EBC NOx, but EBC NOx was elevated in smokers. In vitro, cigarette smoke extract (CSE) induced significantly higher NOx and asymmetric dimethylarginine (ADMA) levels in A549 cells when compared with control media. The anti-oxidant, NAC pre-treatment partially reversed the elevated NOx levels but not the ADMA levels. This thesis is the first to report FENO and EBC NOx in COPD patients in an appropriate sample size to be able to evaluate each subgroup, and the increased EBC NOx levels found in smokers in vivo was consistent with the elevated NOx level in response to CSE observed in vitro. These data indicate that smoking-related airway inflammation and activation of the NO pathway are complex with both an increase in ADMA, NO, NOx and may be regulated by oxidative stress rather than the nitric oxide synthase (NOS) pathway.
|
875 |
Modulation of arterial stiffness by angiotensin receptors and nitric oxide in the insulin resistance syndromeBrillante, Divina Graciela, Clinical School - St George Hospital, Faculty of Medicine, UNSW January 2008 (has links)
The insulin resistance syndrome [INSR] is associated with increased cardiovascular risk and affects up to 25% of the Australian population. The mechanism underlying the relationship between the INSR and increased cardiovascular risk is controversial. We postulated that perturbations in the renin-angiotensin system [RAS] and endothelium-derived NO may be implicated in the development of early vascular changes in the INSR. Repeated measurements of arterial stiffness [using digital photoplethysmography] and haemodynamic parameters in response to vasoactive medications were used to demonstrate the functional expression of angiotensin II [Ang II] receptors and NO synthase [NOS]. Ang II acts via two main receptor sub-types: the Ang II type 1 [AT1] and Ang II type 2 [AT2] receptors. The AT1 receptor is central to the development of arterial stiffness and endothelial dysfunction. The role of AT2 receptors in humans is controversial but is postulated to counter-act AT1 receptor mediated effects in diseased vascular beds. We demonstrated increased AT1 and AT2 receptor-mediated effects in small to medium-sized arteries of subjects with early INSR [Chapter 6]. In addition, functional expression of AT2 receptors in adult insulin resistant humans [Chapter 5], but not in healthy volunteers [Chapter 4] was demonstrated. AT1 receptor blockade in subjects with early INSR resulted in improvements in vascular function, with a consequent functional down-regulation of AT2 receptors [Chapter 7]. Functional NOS expression was demonstrated to be increased in subjects with early INSR compared with healthy controls [Chapter 6]. This was postulated to be a homeostatic response to counteract early vascular changes in subjects with early INSR. AT1 receptor blockade in these subjects reduced functional NOS expression [Chapter 8]. In conclusion, patients with early INSR represent a model of early disease where early intervention may be able to reverse the process incited by the initial exposure to multiple cardiovascular risk factors. Early vascular changes in these individuals are mediated at least in part, by increased AT1 receptor activity and/or expression, and may be detected by changes in arterial stiffness indices and non-invasive vascular reactivity studies. There is a compensatory increase in AT2 receptor and NOS expression/activity to counter-act these vascular changes.
|
876 |
Modulation of arterial stiffness by angiotensin receptors and nitric oxide in the insulin resistance syndromeBrillante, Divina Graciela, Clinical School - St George Hospital, Faculty of Medicine, UNSW January 2008 (has links)
The insulin resistance syndrome [INSR] is associated with increased cardiovascular risk and affects up to 25% of the Australian population. The mechanism underlying the relationship between the INSR and increased cardiovascular risk is controversial. We postulated that perturbations in the renin-angiotensin system [RAS] and endothelium-derived NO may be implicated in the development of early vascular changes in the INSR. Repeated measurements of arterial stiffness [using digital photoplethysmography] and haemodynamic parameters in response to vasoactive medications were used to demonstrate the functional expression of angiotensin II [Ang II] receptors and NO synthase [NOS]. Ang II acts via two main receptor sub-types: the Ang II type 1 [AT1] and Ang II type 2 [AT2] receptors. The AT1 receptor is central to the development of arterial stiffness and endothelial dysfunction. The role of AT2 receptors in humans is controversial but is postulated to counter-act AT1 receptor mediated effects in diseased vascular beds. We demonstrated increased AT1 and AT2 receptor-mediated effects in small to medium-sized arteries of subjects with early INSR [Chapter 6]. In addition, functional expression of AT2 receptors in adult insulin resistant humans [Chapter 5], but not in healthy volunteers [Chapter 4] was demonstrated. AT1 receptor blockade in subjects with early INSR resulted in improvements in vascular function, with a consequent functional down-regulation of AT2 receptors [Chapter 7]. Functional NOS expression was demonstrated to be increased in subjects with early INSR compared with healthy controls [Chapter 6]. This was postulated to be a homeostatic response to counteract early vascular changes in subjects with early INSR. AT1 receptor blockade in these subjects reduced functional NOS expression [Chapter 8]. In conclusion, patients with early INSR represent a model of early disease where early intervention may be able to reverse the process incited by the initial exposure to multiple cardiovascular risk factors. Early vascular changes in these individuals are mediated at least in part, by increased AT1 receptor activity and/or expression, and may be detected by changes in arterial stiffness indices and non-invasive vascular reactivity studies. There is a compensatory increase in AT2 receptor and NOS expression/activity to counter-act these vascular changes.
|
877 |
Nitric oxide signalling in the basolateral complex of the amygdala: an extension of NMDA receptor activation during Pavlovian fear conditioning and expressionOvereem, Kathie January 2006 (has links)
N-methyl-D-asparate (NMDA) receptors located within the basolateral complex of the amygdala are required for the consolidation and expression of Pavlovian conditioned fear. The events downstream of receptor activation that mediate these processes are not well defined. An intermediate step that may be of significance is the synthesis of the gas nitric oxide (NO). Nitric oxide is synthesised as a result of NMDA receptor activation and acts as an unconventional neurotransmitter freely diffusing across cell membranes interacting with its targets in a non-synaptic manner. The targets of NO include cellular components that play significant roles during the consolidation of conditioned fear and the neurotransmission associated with its expression. This implies that NO may be an important intermediary of NMDA receptor activation and both these processes. The current study sought to examine this possibility using fear potentiated startle to examine the expression of learned fear. Three experiments were conducted, fifty rats received intra-BSC microinfusions of the global nitric oxide synthase inhibitor L-NAME either prior to fear conditioning, fear testing, or examination of the shock sensitization of the acoustic startle affect. The results indicated that NO was indeed required for both the consolidation and expression of learned fear, whereas it was not required for shock enhanced startle responding. This study provides new information about the sub-cellular basis of conditioned fear, and highlights the pivotal role played by NO in processes associated with conditioned fear.
|
878 |
Retrograde signalling within fear neurocircuitry: Nitric oxide signalling from the lateral nucleus of the amygdala regulates thalamic EGR-1 mediated alterations of presynaptic protein levels during auditory fear conditioningOvereem, Kathie January 2009 (has links)
Previous research has shown that nitric oxide signalling in the lateral nucleus of the amygdala is required for the consolidation of Pavlovian conditioned fear. Given the evidence that nitric oxide can act as a retrograde signalling molecule in in vitro models of memory consolidation the question arises whether this is also occurring within behavioural memory models? Using auditory fear conditioning this research shows that nitric oxide does indeed act as retrograde signalling molecule in the fear system. Its synthesis in the lateral nucleus of the amygdala regulates conditioning induced expression of the immediate early gene early growth response gene 1 (EGR-1) in cells of the auditory thalamus that project to the lateral nucleus of the amygdala. The regulation of EGR-1 expression by the lateral nucleus of the amygdala was proven to be dependent on amygdala-based cellular excitation, nitric oxide synthesis and NR2B-NMDA receptor activation but not ERK/MAPK activity. Using an EGR-1 antisense oligonucleotide to prevent training induced EGR-1 expressions in the auditory thalamus it was shown that this gene upregulation is necessary for the consolidation of conditioned fear. Finally, inhibition of EGR-1 upregulation in the auditory thalamus was proven to impair conditioning induced increases in the presynaptic proteins synaptophysin, and synapsin II and II back in the lateral nucleus of the amygdala. Overall, the results of this dissertation have shown that nitric oxide acts as a retrograde messenger in a mammalian memory system by modulating gene expression in presynaptic cells. This modulation of gene expression serves to increase levels of presynaptic proteins back at the origin of nitric oxide synthesis. This supports the long standing doctrine that nitric oxide acts as a retrograde signalling molecule to coordinate presynaptic changes associated with memory formation.
|
879 |
Clinical Algorithms for Maintaining Asthma ControlSothirajah, Shobana January 2008 (has links)
Master of Science in Medicine / Rationale: Asthma management aims to achieve optimal control on the minimal effective dose of medication. We assessed the effectiveness of two algorithms to guide ICS dose in well-controlled patients on ICS+LABA in a double-blind study, comparing dose adjustment guided by exhaled nitric oxide (eNO) to clinical care algorithm(CCA) based on symptoms and lung function. Methods: We randomised non-smoking adult asthmatics on minimum FP dose 100μgs daily +LABA to ICS adjustment using eNO or CCA, assessed over 5 visits during 8 months treatment. Primary endpoints were asthma-free days and asthma related quality of life (QOL). Analysis was by mixed model regression and generalised estimating equations with log link. Results: 69 subjects were randomised (eNO:34, CCA:35) and 58 completed the study. At baseline mean FEV1 was 94% pred., mean eNO (200ml/sec) 7.1 ppb, median ACQ6 score 0.33. Median ICS dose was 500 μg (IQR 100-500) at baseline and 100 μg on both eNO (IQR 100-200) and CCA arms (IQR 100–100) at end of study. There were no significant differences between eNO and CCA groups in asthma-free days (RR=0.92, 95% CI 0.8–1.01), AQL (RRAQL<median = 0.95, 95% CI 0.8–1.1) or exacerbation-free days (HR = 1.03, 95%CI 0.6–1.7). Neither clinic FEV1 (overall mean difference FEV1 % pred. -0.24%, 95% CI -2.2–1.7) nor a.m. PEF (mean difference 1.94 L/min (95% CI -2.9–6.8) were significantly different. Similar proportions of subjects were treated for ≥1 exacerbation (eNO: 50%, 95% CI 32.1–67.9; CCA: 60%, 95% CI 43.9–76.2). Conclusion: Substantial reductions in ICS doses were achieved in well controlled asthmatics on ICS+LABA, with no significant differences in outcomes between eNO or clinically based algorithms.
|
880 |
Nitric oxide/cyclic GMP signaling in the central nervous system of Manduca sexta larvae /Zayas Ventura, Ricardo Manuel. January 2003 (has links)
Thesis (Ph.D.)--Tufts University, 2003. / Adviser: Barry A. Trimmer. Submitted to the Dept. of Biology. Includes bibliographical references (leaves 147-164). Access restricted to members of the Tufts University community. Also available via the World Wide Web;
|
Page generated in 0.0736 seconds