Spelling suggestions: "subject:"nitride"" "subject:"nitrided""
1 |
Stanovení nejlepšího nástroje pro vystružování otvoru pro píst ve firmě Bosch Diesel, s.r.o. / Determining the best cutting tool for reaming the piston hole in Bosch Diesel companyRauscher, Tomáš January 2018 (has links)
The main goal of this diploma thesis is to increase cost savings on cutting tools, which are used to ream piston hole inside the housing of CP3 diesel pump made by Bosch Diesel s. r. o. Diploma thesis is divided into a theoretical description of the issue, which is initial knowledge for machining tests, and experimental part, whose task it is to find a suitable reamer for this technological operation. Cost savings will be achieved by selecting suitable tool instead of the serial tool that has been used so far.
|
2 |
Depozice Ga a GaN nanostruktur na křemíkový a grafenový substrát / The deposition of Ga and GaN nanostructures on silicon and graphene substrateMareš, Petr January 2014 (has links)
Presented thesis is focused on the study of properties of Ga and GaN nanostructures on graphene. In the theoretical part of the thesis a problematics of graphene and GaN fabrication is discussed with a focus on the relation of Ga and GaN to graphene. The experimental part of the thesis deals with the depositions of Ga on transferred CVD-graphene on SiO2. The samples are analyzed by various methods (XPS, AFM, SEM, Raman spectroscopy, EDX). The properties of Ga on graphene are discussed with a focus on the surface enhanced Raman scattering effect. Furthermore, a deposition of Ga on exfoliated graphene and on graphene on a copper foil is described. GaN is fabricated by nitridation of the Ga structures on graphene. This process is illustrated by the XPS measurements of a distinct Ga peak and the graphene valence band during the process of nitridation.
|
3 |
Rozsáhlé defekty v nitridech Ga a Al / Extended defects in Ga and Al nitridesVacek, Petr January 2021 (has links)
III-nitridy běžně krystalizují v hexagonální (wurtzitové) struktuře, zatímco kubická (sfaleritová) struktura je metastabilní a má pouze mírně vyšší energii. Jejich fyzikální vlastnosti jsou silně ovlivněny přítomností rozsáhlých defektů, které jsou v těchto dvou strukturách od sebe odlišné. U wurtzitových nitridů se jedná primárně o vláknové dislokace. Některé vláknové dislokace tvoří hluboké energetické stavy v zakázaném pásu, kterými ovlivňují elektrické a optoelektronické vlastnosti těchto materiálů. Oproti tomu, kubické nitridy obsahují množství vrstevných chyb, které představují lokální transformace do stabilnější wurtzitové struktury. Cílem této práce je charakterizovat rozsáhlé defekty v obou krystalových strukturách pomocí elektronové mikroskopie, mikroskopie atomárních sil a rentgenové difrakce. Prokázali jsme, že vzorky GaN/AlN a AlN s orientací (0001) rostlé na substrátu Si (111) pomocí epitaxe z organokovových sloučenin obsahují velkou hustotu vláknových dislokací. Nejčastější jsou dislokace s Burgersovým vektorem s komponentou ve směru a wurtzitové struktury, následované dislokacemi s Burgersovým vektorem s komponentou ve směru a+c, zatímco dislokace s Burgersovým vektorem s c komponentou jsou relativně vzácné. Pravděpodobný původ vláknových dislokací je diskutován v souvislosti s různými mechanismy růstu těchto vrstev. Prizmatické vrstevné chyby byly nalezeny v tenkých nukleačních vrstvách AlN, ale v tlustších vrstvách již nebyly přítomny. Na rozhraní AlN / Si byla nalezena amorfní vrstva složená ze SiNx a částečně taky z AlN. Navrhujeme, že by tato amorfní vrstva mohla hrát významnou roli při relaxaci misfitového napětí. Analýza elektrické aktivity rozsáhlých defektů v AlN byla provedena pomocí měření proudu indukovaného elektronovým svazkem. Zjistili jsme, že vláknové dislokace způsobují slabý pokles indukovaného proudu. Díky jejich vysoké hustotě a rovnoměrnému rozložení však mají větší vliv na elektrické vlastnosti, než mají V-defekty a jejich shluky. Topografické a krystalografické defekty byly studovány na nežíhaných a žíhaných nukleačních vrstvách kubického GaN deponovaných na 3C-SiC (001) / Si (001) substrátu. Velikost ostrůvků na nežíhaných vzorcích se zvyšuje s tloušťkou nukleační vrstvy a po žíhání se dále zvětšuje. Po žíhání se snižuje pokrytí substrátu u nejtenčích nukleačních vrstev v důsledku difúze a desorpce (nebo leptání atmosférou reaktoru). Vrstevné chyby nalezené ve vrstvách GaN, poblíž rozhraní se SiC, byly většinou identifikovány jako intrinsické a byly ohraničené Shockleyho parciálními dislokacemi. Jejich původ byl diskutován, jako i vliv parciálních dislokací na relaxaci misfitového napětí. Díky velkému množství vrstevných chyb byly podrobněji studovány jejich interakce. Na základě našich zjištění jsme vyvinuli teoretický model popisující anihilaci vrstevných chyb v kubických vrstvách GaN. Tento model dokáže předpovědět pokles hustoty vrstevných chyb se zvyšující se tloušťkou vrstvy.
|
4 |
Depozice Ga a GaN nanostruktur na grafenový substrát / Depositon Ga and GaN nanostructures on graphen substrateHammerová, Veronika January 2017 (has links)
This diploma thesis is focused on deposition Ga and GaN structures on graphene fabricated by method of mechanical exfoliation. For mechanical exfoliation was used new method with using DGL Gel-Film with kinetically controlled adhesion. Ga is deposited by Molecular beam epitaxy with using eusion cell in UHV conditions. GaN was obtained by post-nitridation of Ga islands. These structures were investigated with optical microscope, SEM, Raman spectroscopy and photoluminiscence.
|
5 |
Cermety a jejich efektivní využití / Cermets and theirs effective useVaněček, Stanislav January 2009 (has links)
The Thesis described within the scope of the Master Program is focused on cermets, which belong among cutting materials. The introductory portion of the Thesis presents the characteristics of cermets from the perspective of production, physical-mechanical characteristics, marking and usage in cutting. The core portion of the Thesis focuses on the role of cermets in the category of leading world producers of tools and instrumental materials, cutting evaluation, and the suggested working conditions of cermets in lathing operations. The working conditions are prepared for steel and cast iron. The conclusion of the Thesis focuses on a technical-economical analysis of cermets.
|
6 |
Depozice Al a AlN ultratenkých vrstev na křemíkový a grafenový substrát / The deposition of Al and AlN ultrathin layers on silicon and graphene substrateŘihák, Radek January 2016 (has links)
This master's thesis deals with preparation and analysis of ultrathin films of aluminum and aluminum nitride. Films were prepared by effusion cells designed in previous bachelor's thesis. Cell construction and testing is included in this thesis. Behavior of aluminum on silicon dioxide, silicon and graphene was studied. Preparation of aluminum nitride by effusion cell and nitrogen ion source is described.
|
7 |
Získání 3D informací o struktuře vyvíjeného materiálu Si3N4 pro válcovávání legovaných drátů / 3D microstructure evaluation of developed Si3N4 material for alloyed wire rolling applicationsLövy, Vít January 2014 (has links)
This diploma thesis is devoted to the use of 3D reconstruction using EBSD method for microstructural analysis of silicon nitride ceramic material predetermined for the rolling-mill used in the wire production. Application of this method can be used for the grain structure reconstruction and basic microstructural parameters can be than extracted. The development of a suitable method for 3D reconstruction of the structure of the materials the main aim of this work. There are described the different steps begun by sample preparation from the investigated material trough the optimisation of analysis parameters up to the visualization of the grain structure. New type of sample geometry has been designed which leads to the better and faster observation of the microstructure of ceramic materials. This thesis also describes optimal reconstruction parameters such as the geometry of the assembly used in the microscope without mechanical movement of the sample or the influence of conductive coating prepared via in-situ sputtering of suitable metal, or adjustment of the electron and ion beams. Further are described two options of software which can be used for the final generation of 3D structure information and are assessed their advantages and disadvantages. The effect of the filter setting and other parameters and their influence on the resulting structural parameters are also evaluated.
|
8 |
Evaluation of the η (Eta) nitride with three laboratory meltsLind, Martin, Johansson, Cecilia January 2015 (has links)
η (eta) nitride, Cr3Ni2SiN, is a precipitate found in high temperature austenitic stainless steel and is not yet included in Thermo-Calc steel database TCFE7. The aim of this thesis is to collect thermodynamic data to enable the addition of η nitride in the databases. Three laboratory melts with varying levels of silicon, chromium and nickel have been aged at 700-1000 °C for 75 h, 300 h and 1200 h and examined by Light Optical Microscopy, Scanning Electron Microscopy, Energy Dispersive Spectroscopy, Wavelength Dispersive Spectroscopy, Electron Backscattered Diffraction and X-ray Powder Diffraction. η nitride is in the studied alloys an equilibrium phase stabilized with nitrogen. Presence of η nitride was confirmed by Energy Dispersive Spectroscopy and X-ray Powder Diffraction. It was found to precipitate in four different ways, at primary grain boundaries, intragranularly, as a "skeleton-like" precipitate and as a border around the occurring Cr2N precipitates. The area fraction of η nitrides increases with longer aging times and is favored by silicon and nickel. The composition of η nitride is not changing regardless of material composition, aging temperature and aging time. The composition of η nitride in all three materials are 8.7-9.7 wt.% silicon, 47-54 wt.% chromium, 1.4-4.1 wt.% iron and 33-36 wt.% nickel. The nitrogen content 2 determined by Wavelength Dispersive Spectroscopy is 2.8-3.2 wt.%. No complete equilibrium was achieved and together with incomplete mixing of the alloying elements during melting, the microstructure is difficult to evaluate. Other precipitates found are Cr2N, π nitride, σ phase and two unidentified phases, M and N. Of these phases at least Cr2N is not an equilibrium phase as it dissolves during aging. Further aging to achieve complete equilibrium is necessary.
|
9 |
Cyclotron resonance and photoluminescence studies of dilute GaAsN in magnetic fields up to 62 TeslaEßer, Faina 15 February 2017 (has links) (PDF)
In this thesis, we investigate optical and electrical properties of dilute nitride semiconductors GaAsN in pulsed magnetic fields up to 62 T. For the most part, the experiments are performed at the Dresden High Magnetic Field Laboratory (HLD).
In the first part of this thesis, the electron effective mass of GaAsN is determined with a direct method for the first time. Cyclotron resonance (CR) absorption spectroscopy is performed in Si-doped GaAsN epilayers with a nitrogen content up to 0.2%. For the CR absorption study, we use the combination of the free-electron laser FELBE and pulsed magnetic fields at the HLD, both located at the Helmholtz-Zentrum Dresden-Rossendorf. A slight increase of the CR electron effective mass with N content is obtained. This result is in excellent agreement with calculations based on the band anticrossing model and the empirical tight-binding method. We also find an increase of the band nonparabolicity with increasing N concentration in agreement with our calculations of the energy dependent momentum effective mass.
In the second part of this thesis, the photoluminescence (PL) characteristics of intrinsic GaAsN and n-doped GaAsN:Si is studied. The PL of intrinsic and very dilute GaAsN is characterized by both GaAs-related transitions and N-induced features. These distinct peaks merge into a broad spectral band of localized excitons (LEs) when the N content is increased. This so-called LE-band exhibits a partially delocalized character because of overlapping exciton wave functions and an efficient interexcitonic population transfer. Merged spectra dominate the PL of all Si-doped GaAsN samples. They have contributions of free and localized excitons and are consequently blue-shifted with respect to LE-bands of intrinsic GaAsN. The highly merged PL profiles of GaAsN:Si are studied systematically for the first time with temperature-dependent time-resolved PL. The PL decay is predominantly monoexponential and has a strong energy dispersion. In comparison to formerly reported values of intrinsic GaAsN epilayers, the determined decay times of GaAsN:Si are reduced by a factor of 10 because of enhanced Shockley-Read-Hall and possibly Auger recombinations.
In the third part of this thesis, intrinsic and Si-doped GaAsN are investigated with magneto-PL in fields up to 62 T. A magneto-PL setup for pulsed magnetic fields of the HLD was built for this purpose. The blue-shift of LE-bands is studied in high magnetic fields in order to investigate its delocalized character. The blue-shift is diminished in intrinsic GaAsN at higher temperatures, which indicates that the interexcitonic population transfer is only active below a critical temperature 20 K < T < 50 K. A similar increase of the temperature has no significant impact on the partially delocalized character of the merged spectral band of GaAsN:Si. We conclude that the interexcitonic transfer of Si-doped GaAsN is more complex than in undoped GaAsN. In order to determine reduced masses of undoped GaAsN and GaAs:Si, the field-induced shift of the free exciton transition is studied in the high-field limit. We find an excellent agreement of GaAs:Si with a formerly published value of intrinsic GaAs which was determined with the same method. In both cases, the reduced mass values are enhanced by 20% in comparison to the accepted reduced mass values of GaAs. The determined GaAsN masses are 1.5 times larger than in GaAs:Si and match the rising trend of formerly reported electron effective masses of GaAsN.
|
10 |
Study of GaN Based Nanostructures and HybridsForsberg, Mathias January 2016 (has links)
GaN and its alloys with Al and In belong to the group III nitride semiconductors and are today the materials of choice for efficient white light emitting diodes (LEDs) enabling energy saving solid state lighting. Currently, there is a great interest in the development of novel inexpensive techniques to fabricate hybrid LEDs combining high quality III-N quantum well (QW) structures with inexpensive colloidal nanoparticles or conjugated polymers. Such hybrid devices are promising for future micro-light sources in full-color displays, sensors and imaging systems. Organics can be engineered to emit at different wavelengths or even white light based on functional groups or by blend of several polymers. This is especially important for the green region, where there is still a lack of efficient LEDs. Besides optoelectronics, other applications such as biochemical sensors or systems for water splitting can be realized using GaN-based nanostructures. Despite a significant progress in the field, there is still a need in fundamental understanding of many problems and phenomena in III-nitride based nanostructures and hybrids to fully utilize material properties on demand of specific applications. In this thesis, hybrid structures based on AlGaN/GaN QWs and colloidal ZnO nano-crystals have been fabricated for down conversion of the QW emission utilizing non-radiative (Förster) resonant energy transfer. Time-resolved photoluminescence (TRPL) was used to investigate the QW exciton dynamics depending on the cap layer thickness in the bare QW and in the hybrid samples. Although the surface potential influences the exciton dynamics, the maximum pumping efficiency assuming a non-radiative energy transfer mechanism was estimated to be ~40 % at 60 K in the structure with thin cap layer of 3 nm. Since bulk GaN of large area is difficult to synthesize, there is a lack of native substrates. Thus, GaN-based structures are usually grown on SiC or sapphire, which results in high threading dislocation density in the active layer of the device and can be the reason of efficiency droop in GaN based LED structures. Fabricating GaN nanorods (NR) can be a way to produce GaN with lower defect density since threading dislocations can be annihilated toward the NR wall during growth. Here, GaN(0001) NRs grown on Si(111) substrates by magnetron sputtering using a liquid Ga target have been investigated. A high quality of NRs have been confirmed by transmission electron microscopy (TEM) and TRPL. Two strong near band gap emission lines at ~3.42 eV and ~3.47 eV related to basal plane stacking faults (SF) and donor-bound exciton (DBE), respectively, have been observed at low temperatures. TRPL properties of the SF PL line suggest that SFs form a regular structure similar to a multiple QWs, which was confirmed by TEM. The SF related PL measured at 5 K for a single NR has a significantly different polarization response compared to the GaN exciton line and is much stronger polarized (> 40 %) in the direction perpendicular to the NR growth axis. Hybrids fabricated using GaN NRs and the green emitting polyfluorene (F8BT) have been studied using micro-TRPL. In contrast to the DBE emission, the recombination time of the SF-related emission was observed to decrease, which might be due to the Förster resonance energy transfer mechanism. Compared to chemical vapor deposition, sputtering allows synthesis at much lower temperatures. Here, sputtering was employed to grow InAlN/GaN heterostructures with an indium content targeted to ~18 %, which is lattice matched to GaN. This means that near strain-free GaN films can be synthesized. It was found that using a lower temperature (~25 C) while depositing the top InAlN results in an improved interface quality compared to deposition at 700 C. In latter case, regions of quaternary alloy of InAlGaN forming structural micro-defects have been observed at the top InAlN/GaN interface in addition to optically active flower-like defect formations.
|
Page generated in 0.0491 seconds