• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 692
  • 81
  • 77
  • 68
  • 41
  • 25
  • 14
  • 14
  • 6
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 1199
  • 406
  • 269
  • 190
  • 159
  • 152
  • 130
  • 126
  • 119
  • 100
  • 96
  • 95
  • 93
  • 91
  • 89
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Processing and characterization of contacts on MBE-grown gallium nitride

Da Cunha, Carlo Requiao. January 2001 (has links)
Thesis (M.S.)--West Virginia University, 2001. / Title from document title page. Document formatted into pages; contains viii, 139 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 107-108).
212

Tribological investigation of nanocomposite thin films of transitional metal nitrides with silver inclusions

Stone, D'Arcy S 01 December 2011 (has links)
In this tribological study, a temperature dependent inquiry of the changes in chemistry and crystal structure of two selected double metal oxides is undertaken. It is known that chameleon coatings of Mo2N/Ag/MoS2 produce a friction coefficient of 0.1 from wear testing at 600 °C for 300,000 cycles. The low friction is attributed to the formation of silver molybdates layers, a lubricious double-metal oxide, in the coating. Double-metal oxides consisting of a group 6 transitional metal and silver (silver molybdate (Ag2Mo2O7) and silver tungstate (Ag2WO4)) were used for this investigation. Thin films and powders were investigated using high temperature x-ray diffraction, high-temperature Raman spectroscopy and differential scanning calorimetry in tandem with sliding tests from 25 to 600 °C. Our results were compared to external ab-initio molecular dynamic simulations performed elsewhere to qualify experimental results. The layered atomic structure of silver molybdate facilitates sliding, resulting in a low coefficient of friction (<0.2) from 300-500 °C. Unlike Ag2Mo2O7, however, Ag2WO4 does not possess a layered atomic structure and produced coefficients of friction (>0.4) in all temperature ranges between room temperature and 500 °C. Applying the knowledge gained from prior studies of the intrinsic properties of double metal oxides of group 6, chameleon coatings consisting of group 5 transitional metal nitrides (vanadium nitride, niobium nitride, and tantalum nitride) with silver inclusions were created using unbalanced magnetron sputtering to investigate their potential application as adaptive, friction reducing coatings. The coatings were tribotested against a Si3N4 counterface in the 22 to 1000 °C temperature range. In-situ Raman Spectroscopy measurements were taken during heating and wear testing at 700 °C to identify the evolution of phases in the coatings' surfaces and in the wear track. The chemical and structural properties of the coatings were also characterized before and after wear testing using x-ray diffraction. At higher temperatures, oxygen, silver and the transition metals react on the surface to form potentially lubricious double oxide phases (silver vanadate, silver niobate and silver tantalate). All coatings performed similarly up to 750 °C. The VN/Ag coating, however, had a lower coefficient of friction at 750 °C comparatively to TaN/Ag and NbN/Ag, likely due to its reported lower melting temperature (450 °C) and its layered crystal structure.
213

Synthesis and characterization of ceramics in the Ti-B-N-C system

Yoon, Su-Jong January 1994 (has links)
Titanium and boron nitride and carbide, titanium diboride were synthesized by carbothermic reduction as single phase as well as mixtures intended to form composite materials. The aim of the project is to study the physical chemistry of carbothermic reduction for the production of pure nonoxide ceramic powders and also for the in-situ formation of ceramic/ceramic partially-densified composites. The thermodynamic and kinetic factors that govern the phase constituents are discussed and the effect of processing parameters on the morphology and extent of reduction are also established. The first part of the present investigation is aimed at the production of titanium nitride, carbonitride and carbide powders and the in-situ formation of TiN/TiC partially-densified composites by the carbothermic reduction of titania in suitable nitriding atmospheres. The investigation includes the aspects of the thermodynamics and kinetics of the nitriding reaction and points out the reaction mechanism by identifying the phase formed after the nitridation process. The microstructures produced after the reduction-nitridation process have been correlated with the thermodynamic and kinetic parameters. The synthesized titanium nitride powder was identified as the carbonitride phase, Ti(CxN1_x), having a range of composition. The rate of reduction of TbO2 was found to be determined by the rate of oxygen diffusion in the sub-oxide lattice and the derived value of activation energy in the temperature range 1473K to 1773K from the Arrhenius plot is 120 kJ-mole-1 of T102. TI305 was found as a high temperature precursor phase for the formation of titanium nitride. The use of iron chloride as catalyst and activated charcoal in the mixtures of oxide increased the yield of titanium nitride phase by enhancing the rate of reduction of titanium oxides. The morphology of titanium carbonitride particles was dependent upon the reactivity of carbon and the temperature. The calculated equilibrium phase fields were found to be in agreement with the experimental data and provide a means to select the variables for the reduction condition for designing a required ceramic microstructure. The microstructure of boron nitrides is closely related to the structural chemistry of carbon and nitriding agent. The main aim of the second part of the project was to synthesize boron nitride and carbide powders and whiskers by carbothermic reduction of boric anhydride (6203) in nitrogen atmosphere and also to understand a relation between the processing parameters and the phases produced. The effect of processing conditions such as the gas composition, reactivity of carbon, reaction temperature and time as well as the composition of starting materials on the synthesis of boron nitride and carbide phases were studied. The reactivity of carbon, B/C ratio and gas composition were the most important variables that determined the formation, structure and morphology of the nitride. During the nitridation process, boron carbide phase also formed and played a significant role. The investigation also reports the evidence for the formation of metastable forms of BN i. e wurtzite and cubic BN. We also report the results of the solubility of nitrogen in C-saturated B4C structure. The third part of the present work is aimed at the production of TiB2 powders. Aspects of the formation of two or three ceramic phase mixtures were also examined together with the relative stability of the single phase mixed diborides with respect to pure diboride phase. The central aim of this part is to establish the mechanism of the synthesis reaction leading to the formation of uniform size of titanium diboride crystals. Titanium boride (TiB2) powder was produced in the powder form by the reduction of ingredient oxides with carbon via a gas-solid phase reaction. For the production of the composite microstructure, the nitrogen partial pressure was found to be the most critical factor. In the composite microstructure, the titanium nitride particles have a submicrometer size whereas the boride particle size is only a few micrometers with predominantly hexagonal morphology. Some calculated equilibrium phase fields have been experimentally verified. The empirical verification is a useful tool to establish the correctness of the calculated phase diagram. The theoretical approach therefore enables to identify the condition for the formation of phase mixtures. The constituent phases depend on the reduction conditions. For example, nitrides in equilibrium with Ti62 can only form above a critical nitrogen partial pressure whereas TiC or B4C form in the inert atmospheres. This result is applicable to all other ceramics. The investigation also shows the viability of production of the composite powder mixture via the oxide co-reduction technique. The synthesis of TIB2/TiN, TiB2ýC, TB2/TN/BN and mixed diboride composites is possible by employing the reduction route.
214

Hot-wire chemical vapour deposition of nanocrystalline silicon and silicon nitride : growth mechanisms and filament stability

Oliphant, Clive Justin January 2012 (has links)
Philosophiae Doctor - PhD / Nanocrystalline silicon (nc-Si:H) is an interesting type of silicon with superior electrical properties that are more stable compared to amorphous silicon (a-Si:H). Silicon nitride (SiNₓ) thin films are currently the dielectric widely applied in the microelectronics industry and are also effective antireflective and passivating layers for multicrystalline silicon solar cells. Research into the synthesis and characterization of nc-Si:H and SiNₓ thin films is vital from a renewable energy aspect. In this thesis we investigated the film growth mechanisms and the filament stability during the hot-wire chemical vapour deposition (HWCVD) of nc-Si:H and SiNₓ thin films. During the HWCVD of nc-Si:H, electron backscatter diffraction (EBSD) revealed that the tantalum (Ta) filament aged to consists of a recrystallized Ta-core with Ta-rich silicides at the hotter centre regions and Si-rich Ta-silicides at the cooler ends nearer to the electrical contacts. The growth of nc-Si:H by HWCVD is controlled by surface reactions before and beyond the transition from a-Si:H to nc-Si:H. During the transition, the diffusion of hydrogen (H) within the film is proposed to be the reaction controlling step. The deposition pressure influenced the structural, mechanical and optical properties of nc-Si:H films mostly when the film thickness is below 250 nm. The film stress, optical band gap, refractive index and crystalline volume fraction approached similar values at longer deposition times irrespective of the deposition pressure. Filament degradation occurred during the HWCVD of SiNₓ thin films from low total flow rate SiH₄ / ammonia (NH₃) / H₂ gas mixture. Similar to the HWCVD of nc-Si:H, the Ta-core recrystallized and silicides formed around the perimeter. However, Tanitrides formed within the filament bulk. The extent of nitride and silicide formation, porosity and cracks were all enhanced at the hotter centre regions, where filament failure eventually occurred. We also applied HWCVD to deposit transparent, low reflective and hydrogen containing SiNₓ thin films at total gas flow rates less than 31 sccm with NH₃ flow rates as low as 3 sccm. Fluctuations within the SiNₓ thin film growth rates were attributed to the depletion of growth species (Si, N, and H) from the ambient and their incorporation within the filament during its degradation.
215

Boron Nitride by Atomic Layer Deposition: A Template for Graphene Growth

Zhou, Mi 08 1900 (has links)
The growth of single and multilayer BN films on several substrates was investigated. A typical atomic layer deposition (ALD) process was demonstrated on Si(111) substrate with a growth rate of 1.1 Å/cycle which showed good agreement with the literature value and a near stoichiometric B/N ratio. Boron nitride films were also deposited by ALD on Cu poly crystal and Cu(111) single crystal substrates for the first time, and a growth rate of ~1ML/ALD cycle was obtained with a B/N ratio of ~2. The realization of a h-BN/Cu heterojunction was the first step towards a graphene/h-BN/Cu structure which has potential application in gateable interconnects.
216

Study of III-nitride Nanowire Growth and Devices on Unconventional Substrates

Prabaswara, Aditya 10 1900 (has links)
III-Nitride materials, which consist of AlN, GaN, InN, and their alloys have become the cornerstone of the third generation compound semiconductor. Planar IIINitride materials are commonly grown on sapphire substrates which impose several limitations such as challenging scalability, rigid substrate, and thermal and lattice mismatch between substrate and material. Semiconductor nanowires can help circumvent this problem because of their inherent capability to relieve strain and grow threading dislocation-free without strict lattice matching requirements, enabling growth on unconventional substrates. This thesis aims to investigate the microscopic characteristics of the nanowires and expand on the possibility of using transparent amorphous substrate for III-nitride nanowire devices. In this work, we performed material growth, characterization, and device fabrication of III-nitride nanowires grown using molecular beam epitaxy on unconventional substrates. We first studied the structural imperfections within quantum-disks-in-nanowire structure grown on silicon and discovered how growth condition could affect the macroscopic photoluminescence behavior of nanowires ensemble. To expand our work on unconventional substrates, we also used an amorphous silica-based substrate as a more economical substrate for our nanowire growth. One of the limitations of growing nanowires on an insulating substrate is the added fabrication complexity required to fabricate a working device. Therefore, we attempted to overcome this limitation by 5 investigating various possible GaN nanowire nucleation layers, which exhibits both transparency and conductivity. We employed various nucleation layers, including a thin TiN/Ti layer, indium tin oxide (ITO), and Ti3C2 MXene. The structural, electrical, and optical characterizations of nanowires grown on different nucleation layers are discussed. From our work, we have established several key processes for transparent nanowire device applications. A nanowire LED emitting at ∼590 nm utilizing TiN/Ti interlayer is presented. We have also established the growth process for n-doped GaN nanowires grown on ITO and Ti3C2 MXene with transmittance above 40 % in the visible wavelength, which is useful for practical applications. This work paves the way for future devices utilizing low-cost substrates, enabling further cost reduction in III-nitride device fabrication.
217

Low Damage, High Anisotropy Inductively Coupled Plasma for Gallium Nitride based Devices

Ibrahim, Youssef H. 27 May 2013 (has links)
Group III-nitride semiconductors possess unique properties, which make them versatile materials for suiting many applications. Structuring vertical and exceptionally smooth GaN profiles is crucial for efficient optical device operation. The processing requirements for laser devices and ridge waveguides are stringent as compared to LEDs and other electronic devices. Due to the strong bonding and chemically inert nature of GaN, dry etching becomes a critical fabrication step. The surface morphology and facet etch angle are analyzed using SEM and AFM measurements. The influence of different mask materials is also studied including Ni as well as a SiO2 and resist bilayer. The high selectivity Ni Mask is found to produce high sidewall angles ~79°. Processing parameters are optimized for both the mask material and GaN in order to achieve a highly anisotropic, smooth profile, without resorting to additional surface treatment steps. An optimizing a SF6/O2 plasma etch process resulted in smooth SiO2 mask sidewalls. The etch rate and GaN surface roughness dependence on the RF power was also examined. Under a low 2mTorr pressure, the RF and ICP power were optimized to 150W and 300W respectively, such that a smooth GaN morphology and sidewalls was achieved with reduced ion damage. The The AFM measurements of the etched GaN surface indicate a low RMS roughness ranging from 4.75 nm to 7.66 nm.
218

Ion Beam Modifications of Boron Nitride By Ion Implantation

Machaka, Ronald 29 August 2008 (has links)
The search for alternative methods of synthesizing cubic boron nitride (cBN), one of the hardest known materials, at low thermo-baric conditions has stimulated considerable research interest due to its great potential for numerous practical industrial applications. The practical applications are motivated by the material’s amazing combination of extraordinarily superior properties. The cBN phase is presently being synthesized from graphite-like boron nitride modifications at high thermo-baric conditions in the presence of catalytic solvents or by ion–beam assisted (chemical and physical) deposition methods. However, the potential and performance of cBN have not been fully realized largely due to central problems arising from the aforementioned synthesis methods. The work reported in this dissertation is inspired by the extensive theoretical investigation of the influence of defects in a ecting the transformation of the hexagonal boron nitride (hBN) phase to the cBN phase that was carried out by Mosuang and Lowther (Phys Rev B 66, 014112 (2002)). From their investigation, using an ab-initio local density approach, for the B, C, N, and O simple defects in hBN, they concluded that the defects introduced into hBN could facilitate a low activation–energy hexagonal-to-cubic boron nitride phase transformation, under less extreme conditions. We use ion implantation as a technique of choice for introducing ‘controlled’ defects into the hot–pressed polycrystalline 99.9% hBN powder samples. The reasons are that the technique is non–equilibrium (not influenced by dilusion laws) and controllable, that is the species of ions, their energy and number introduced per unit area can be changed and monitored easily. We investigate the structural modifications of hBN by ion implantation. Emphasis is given to the possibilities of influencing a low activation–energy hBN-to-cBN phase transformation. The characterization of the structural modifications induced to the hBN samples by implanting with He+ ions of energies ranging between 200 keV and 1.2 MeV, at fluences of up to 1.0 1017 ionscm2, was accomplished by correlating results from X-Ray Di raction (XRD), micro-Raman (-Raman) spectroscopy measurements, and two-dimensional X-Y Raman (2D-Raman) mapping measurements. The surface to pography of the samples was investigated using Scanning Electron Microscopy (SEM). E orts to use Surface Brillouin Scattering (SBS) were hampered by the transparency of the samples to the laser light as well as the large degree of surface roughness. All the implantations were carried out at room temperature under high vacuum. 2D-Raman mapping and -Raman spectroscopy measurements done before and after He+ ion irradiation show that an induced hBN-to-cBN phase transformation is possible: nanocrystals of cBN have been observed to have nucleated as a consequence of ion implantation,the extent of which is dictated by the fluences of implantation. The deviationof the measured spectra from the Raman spectra of single crystal cBN is expected, has been observed before and been attributed to phonon confinement e ects. Also observed are phase transformations from the pre-existing hBN modification to: (a) the amorphous boron nitride (aBN), (b) the rhombohedral boron nitride (rBN) modifications, (c) crystalline and amorphous boron clusters, which are a result of the agglomeration of elementary boron during and immediately after ion implantation. These transformations were observed at high energies. Unfortunately, the XRD measurements carried out could not complement the Raman spectroscopy outcomes probably because the respective amounts of the transformed materials were well below the detection limit of the instrument used in the former case.
219

Self-assembled monolayers : characterization and application to microcantilever sensors

Seivewright, Brian. January 2007 (has links)
No description available.
220

PHOTOLUMINESCENCE STUDY OF NON-POLAR III-NITRIDE SEMICONDUCTORS

Yang Cao (11858636) 03 January 2022 (has links)
<p>Nitride semiconductors are promising for applications in opto-electronic devices due to their wide band gap that is adjustable by appropriate choice of alloy composition. To date, many III-nitride devices have been demonstrated, such as light-emitting diodes, lasers, etc. Most opto-electronic devices make use of the optical transition from conduction band to valence band. Moreover, the large conduction band offset achieved by III-nitrides makes it possible to take advantage of transitions inside the conduction band or valence band, which provide much more freedom for band engineering. Although many III-nitrides based opto-electronic devices have been invented and implemented in commercial use, there is still a need for more compact, rugged, higher efficiency devices with lower cost. Many challenges of III-nitride semiconductors are related to material defects, lattice mismatch and internal polarization fields. Photoluminescence is a convenient technique to characterize sample quality and optical properties. It does not destroy the samples or need any electrical contacts. Therefore, it is commonly used in qualitative analysis of III-nitrides. This thesis focuses on non-polar m-plane III-nitrides structures, because this crystal orientation eliminates internal polarization fields in heterostructures. We first performed a photoluminescence study of a series of m-plane InGaN thin films with In compositions up to 24.5%. Evidence of large In composition fluctuations was observed. This inhomogeneity of In composition contributes to the non-monotonic temperature dependence of photoluminescence peak energy and linewidth. A large drop of internal quantum efficiency when temperature increases to room temperature was observed, which indicates the presence of a large number of non-radiative recombination centers. This is due to low temperature growth of InGaN by plasma assisted molecular beam epitaxy. The InGaN film with 11% has a linewidth close to theoretical calculations for InGaN with random In distribution, and much smaller than many reported polar c-plane InGaN films with comparable In compositions, which suggests improved material quality. This In composition was selected for the design of InGaN/AlGaN superlattices.</p> <p>In order to avoid the disadvantage of strain buildup, we designed nearly strain-balanced non-polar m-plane InGaN/AlGaN structures with In composition of about 9%. Steady-state photoluminescence and time-resolved photoluminescence were performed on these structures. A significant discrepancy between measured and calculated PL peak positions was observed. This is likely due to the In composition fluctuations and quantum confinement in quantum wells. The broadening mechanism of the PL in the superlattices was investigated. The low-temperature linewidth of undoped superlattices is comparable to many previously reported values for m-plane InGaN/GaN quantum wells. Similar to InGaN films, the internal quantum efficiency drops dramatically when temperature reaches room temperature. Regions with high In compositions act as localization centers for excitons. An average localization potential depth of 21 meV was estimated for undoped superlattices. This small potential depth does not reduce the degree of polarization of emitted light, and contributes to the narrow linewidth. A fast decay time of 0.3 ns at 2 K was observed for both doped and undoped superlattices. This value is much smaller than that for polar c-plane InGaN/GaN superlattices. The localization of excitons was found to be strong and not affected by magnetic field at low temperatures. Compared with undoped superlattices, the doping sheets reduce decay pathways of excitons in doped superlattices.</p> <p> </p>

Page generated in 0.0483 seconds