11 |
Indices of nitric oxide productionRhodes, Peter January 1995 (has links)
No description available.
|
12 |
Nitrite reduction and carbohydrate oxidation in root plastidsBowsher, C. G. January 1988 (has links)
No description available.
|
13 |
Reaction of 3-deoxyhexosulose with nitrite ionTian, Wei January 1989 (has links)
No description available.
|
14 |
Développement d’un couplage cw-CRDS – chambre de simulation pour la mesure in situ du radical HO2 et d’espèces d’intérêt atmosphérique / Development of a cw-CRDS-environmental chamber setup for the in situ measurement of HO2 radicals and species of atmospheric interestDjehiche, Mokhtar 21 October 2011 (has links)
La spectroscopie cw-CRDS (continuous wave-Cavity Ring-Down Spectroscopy) est une technique d’absorption très sensible utilisée pour identifier et quantifier des espèces en phase gazeuse à des concentrations faibles et avec un temps de réponse très court. Nous avons développé une chambre de simulation atmosphérique (110 L) équipée d’un spectromètre cw-CRDS dans le proche IR (~ 1,5 µm), permettant la détection in situ du radical hydroperoxyle HO2, et d’autres espèces d’intérêt atmosphérique. Nous avons démontré les performances de ce dispositif original en étudiant deux systèmes réactionnels. Le premier système étudié est la photolyse du méthyle nitrite (CH3ONO), qui génère des radicaux OH. Le HONO issu de la réaction OH + CH3ONO a été identifié et quantifié pour la première fois, ce qui constitue une avancée importante dans la connaissance de cette réaction. La formation du HONO et du CH2O, produit majoritaire de la photolyse, a été étudiée dans différentes conditions expérimentales. Dans un deuxième temps, l’oxydation du méthanol dans l’air par les atomes de chlore Cl a été étudiée. Le radical HO2 a été observé pour la première fois par cw-CRDS in situ dans une chambre de simulation atmosphérique. La cinétique de disparition de HO2 a été étudiée, confirmant la valeur de la constante de vitesse de la réaction mutuelle ; une perte significative sur les parois de réacteur a été observée à très basse pression. La mesure des taux de photolyse du NO2, du CH3ONO et du Cl2 par différentes méthodes a permis de caractériser le dispositif expérimental développé dans ce travail. / The continuous wave-Cavity Ring-Down Spectroscopy (cw-CRDS) is a very sensitive absorption technique used to selectively identify and quantify gaseous species at low concentrations and with a short acquisition time. We have developed an environmental chamber (110L) coupled with a near-IR cw-CRDS spectrometer for the detection of HO2 and other gaseous species. In order to demonstrate the performance of this setup, we have investigated two reaction systems. The first study concerns the methyl nitrite (CH3ONO) photolysis, which is known to generate OH radicals. The HONO product in the OH + CH3ONO reaction has been identified and quantified for the first time, which represents a very important step in the comprehension of this reaction. The formation of HONO and CH2O (a major product in the CH3ONO photolysis) has been studied under different experimental conditions. Secondly, the oxidation of methanol in air by chlorine atoms has been investigated. The HO2 radical has been observed for the first time by in-situ cw-CRDS in an environmental chamber. The kinetics of HO2 disappearance has been studied and the results confirm the rate constant value of the HO2 self reaction. A rather significant loss of HO2 on the walls of reactor has been observed at low pressure. Finally, the measurement of the photolysis frequencies of NO2, CH3ONO and Cl2 by various methods has allowed characterizing the experimental device developed in this work.
|
15 |
Desenvolvimento de metodologia alternativa limpa para análise de nitrito /Lemos, Sahra Cavalcante. January 2008 (has links)
Orientador: Helena Redigolo Pezza / Banca: Adelino Vieira de Godoy Netto / Banca: Matthieu Tubino / Resumo: O presente trabalho propõe um novo método para análise de nitrito em amostras de águas naturais e alimentos, por espectroscopia de reflectância difusa combinada com spot test. Neste método, a reação de interesse é procedida em papel de filtro, por meio da adição de 30 μL da solução do reagente cromogênico, seguida da adição de 30 μL da solução de analito. A intensidade da coloração do produto é medida por reflectância difusa, em 532 nm. O desenvolvimento do método passou por uma etapa de planejamento experimental, que permitiu encontrar as concentrações ótimas dos reagentes, para as quais a sensibilidade do método é maior (9,60 × 10-3 mol L-1 para o dicloridrato de naftiletilenodiamina e 5,90 × 10-2 mol L-1 para o ácido sulfanílico). O reagente cromogênico foi preparado misturando-se os dois compostos em uma mesma solução, juntamente com ácido clorídrico, na concentração de 6,00 x 10-2 mol L-1. Uma relação linear (r = 0,997) foi observada na faixa entre 2,90 × 10-4 e 1,74 × 10-3 mol L-1 de ânions nitrito, representando os valores de reflectância obtidos versus o logaritmo da concentração de nitrito. Com o objetivo de trabalhar com quantidades ainda menores do analito, as concentrações dos reagentes cromogênicos foram reduzidas pela metade, exceto a do ácido clorídrico, que permaneceu constante, e uma segunda curva analítica (r = 0,997) foi construída na faixa entre 7,17 x 10-6 e 4,35 x 10-4 mol L-1 de íons nitrito, representando-se graficamente os valores de reflectância obtidos versus a concentração de analito presente nas soluções. O produto colorido mostrou uma estabilidade óptica de pelo menos 50 minutos em atmosfera ambiente e de três dias, se mantido em dessecador com atmosfera de nitrogênio. O método apresentou bons valores de precisão intradia e interdia, com RSD iguais... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: This work proposes a new method for nitrite determination in natural waters and foodstuff samples by diffuse reflectance spectroscopy combined with spot tests. In this method, the reaction occurs on the surface of a filter paper. Firstly 30 μL of the cromogenic reagent solution were added to the paper, followed by 30 μL of sample solution. The intensity of the color of the reaction product is measured by diffuse reflectance, at 532 nm. Experimental design was employed for the development of this method and the optimized reagent concentrations found were 9.60 × 10-3 mol L-1 for N-(1-naphtil)ethylenediamine hydrochloride and 5.90 × 10-2 mol L-1 for sulfanilic acid. The cromogenic solution was composed by the mixture of both reagents with HCl 6.00 x 10-2 mol L-1, in deionized water. A linear relationship (r = 0.997) was observed in the concentration range of 2.90 × 10-4 to 1.74 × 10-3 mol L-1 of nitrite, by plotting reflectance values versus the logarithm of nitrite concentration in the standard solutions. In order to work with lower quantities of nitrite, the concentrations of sulfanilic acid and N-(1-naphtil)ethylenediamine hydrochloride were diluted to a half of the concentrations proposed by the experimental design. The calibration curve constructed under these conditions showed a linear relationship (r = 0.997) ranging from 7.17 x 10-6 to 4.35 x 10-4 mol L-1 of nitrite ions, by plotting reflectance values versus the concentration of nitrite standard solutions. The colored product had an optical stability of at least 50 minutes in ambient conditions and of three days when kept under nitrogen atmosphere. In the investigation of intraday and iterday precision, the RSD values obtained were 1.51% and 2.01%, respectively. The new method was applied to the analysis of two samples of natural waters and one sausage sample. The results obtained 9 by the proposed method were compared with... (Complete abstract click electronic access below) / Mestre
|
16 |
Characterization of the Response of Pseudomonas Aeruginosa to the Novel Bactericidal Agent AB569 and its use as a Model Organism in Microbial Fuel CellsMcDaniel, Cameron T. 29 October 2018 (has links)
No description available.
|
17 |
i-Nitrite Therapy for Treatment of Peripheral Arterial DiseaseMaan, Neeti 27 August 2012 (has links)
No description available.
|
18 |
Improvement of the Reliability of the Anaerobic Ammonium Oxidation (Anammox) Process: Mechanisms of Nitrite Inhibition and Recovery StrategiesLi, Guangbin January 2016 (has links)
Anaerobic ammonium oxidizing (Anammox) bacteria are known to utilize ammonium and nitrite as electron donor and acceptor, respectively, to produce nitrogen gas as their main final product with by-product formation of nitrate. Anammox bacteria provide the advantages of significant saving in aeration, no requirement for external electron donor, reduction of greenhouse gas emission, lowered sludge production, and higher specific nitrogen-removing activity compared to the conventional nitrification-denitrification process used in nutritent-N removal. Therefore, the anammox process has recently been widely studied and applied as a state-of-the-art biotechnology to remove nutrient nitrogen from ammonium-rich wastewater. However, the inhibitory impact of nitrite (one of the two main substrates) on the anammox process has been reported in both lab- and full-scale anammox systems, which limits the application of anammox process. Based on the current knowledge, a wide range of nitrite concentrations causing anammmox inhibition was reported to be correlated to the pH and energy status of anammox bacteria, and the understanding of the mechanisms of nitrite inhibition to anammox bacteria is still not clear. Therefore, the purpose of this work is to investigate the mechanism of nitrite inhibition and develop a strategy for recovering nitrite inhibited anammox processes. The effects of pre-exposing anammox bacteria to nitrite alone on their subsequent activity and metabolism after ammonium has been added was evaluated in batch bioassays. The results showed that pre-exposure of anammox bacteria to nitrite without ammonium caused dramatic inhibition with observed 50% inhibition concentration (IC₅₀) of 52 mg NO₂⁻-N L⁻¹, compared to an IC₅₀ of 384 mg NO₂⁻-N L⁻¹ obtained in the control group with ammonium and nitrite added simultaneously. The accumulated nitric oxide (NO) found in the group with anammox bacteria pre-inhibited by nitrite indicated that pre-exposure to nitrite most likely caused disruption of the anammox biochemistry by interrupting the hydrazine synthesis step. Meanwhile, active metabolic status of anammox bacteria fueled by a strong proton gradient maintained by controlling pH in the optimal range of 7.2-7.8 enhanced the ability of anammox bacteria to tolerate nitrite inhibition. This was evaluated by depleting the proton gradient by utilizing two uncouplers of respiration, 2,4 dinitrophenol (24DNP) and carbonyl cyanide m-chlorophenyl hydrazine (CCCP). The results showed that presence of 0.28 mg CCCP L⁻¹ caused enhancement of nitrite inhibition to anammox bacteria, with a calculated IC₅₀ of 18.7 mg NO₂⁻-N L⁻¹ compared to an IC₅₀ greater than 150 mg NO₂⁻-N L⁻¹ in the control group lacking CCCP. Meanwhile, the sensitivity to NO₂⁻ was 3 times in anammox bacteria pre-exposed to 100 mg NO₂⁻ L⁻¹ for 24 h than in treatments lacking 37.8 mg 24DNP L⁻¹. A potential strategy of detoxifying the nitrite inhibition to anammox bacteria was proposed by using nitrate due to the finding of the presence of NarK, with potential function of NO₃⁻/NO₂⁻ antiporter, encoded in the anammox genome. Both batch- and continuous-experiments were carried out to test this hypothesis. The relative contribution of nitrate to nitrite detoxification was found to be pH dependent but the attenuation of nitrite inhibition is independent of the proton motive force which is supported by the result that nitrate caused almost complete attenuation of nitrite toxicity in cells exposed to the proton gradient disruptor, CCCP, at pH 7.5. Increase in nitrate concentration also improved the attenuation of nitrite inhibition to anammox process, with the maximum recovery being achieved at 0.85 mM in batch experiment and 2.0 mM for 3 days in continuous-fed bioreactor. Moreover, the timing of nitrate addition is significant because long-term nitrite inhibition of anammox biomass results in irreversible damage of the cells, under which condition addition of nitrate showed no positive impact on recovery of nitrite inhibition. This study also investigated the inhibitory effects of six metals (Cu²⁺, Cd²⁺, Ni²⁺, Zn²⁺, Pb²⁺, and molybdate) commonly found in landfill leachate on anammox activity. Results from batch bioassays indicated that precipitation reactions decreased considerably the soluble concentration of the cationic metals. Cu, Zn, Cd, and Ni were the most toxic metals with 50% inhibiting soluble concentrations of 4.2, 7.6, 11.2, and 48.6 mg L⁻¹, respectively. Molybdate and Pb²⁺ were not or only moderately inhibitory at the highest soluble concentrations tested (22.7 mg Mo L-1 and 6.0 mg Pb L⁻¹, respectively). Microbial inhibition was strongly correlated with both the added- and the dissolved metal concentration. These relationships could be described by a noncompetitive inhibition model for all inhibitory metals except for Pb. The results of this dissertation indicate that the resistance of anammox bacteria to nitrite inhibition could be enhanced by maintaining either an active metabolism in simultaneous presence of ammonium and nitrite, or sufficient proton gradient to enable relieving nitrite accumulation in sensitive regions of the anammox cells through an active nitrite transport system. An alternative nitrite detoxification mechanism was also demonstrated which relied on a secondary transport system facilitated by exogenous nitrate to avoid the accumulation of toxic intraorganelle nitrite concentration. Moreover, the results obtained in the study investigating the impact of heavy metals on anammox process provides new insights on the sensitivity of anammox bacteria to common metals and can be used to devise strategies to minimize inhibition of the anammox process when treating wastewater containing heavy metals.
|
19 |
Determinação sequencial de nitrato e nitrito por voltametria de pulso diferencial empregando um ultramicroeletrodo de ouro / Sequential determination of nitrate and nitrite by differential pulse voltammetry using a gold ultramicroelectrodoMachado, Genikelly Cavalcanti 11 June 2010 (has links)
Este trabalho descreve o desenvolvimento de um método eletroanalítico para determinação sequencial de nitrito (NO2-) e nitrato (NO3-), utilizando como técnica, a voltametria de pulso diferencial. O método se baseia na redução eletroquímica dos íons nitrato sobre um ultramicroeletrodo de ouro modificado in situ com cádmio depositado em regime de subtensão, e na seqüência, a remoção da monocamada de cádmio e a oxidação eletroquímica dos íons nitritos sobre o ultramicroeletrodo não modificado. Os ensaios voltamétricos para determinação quantitativa de nitrato e nitrito foram realizados em solução de NaClO4 0,1 molL-1 + HClO4 1,0x 10-3 molL-1 (pH = 3,3) preparada com água ultrapura. Utilizando as condições experimentais e os parâmetros voltamétricos otimizados, foram construídas curvas analíticas para determinação de nitrito e nitrato separadamente e também para determinação sequencial dos dois analitos. Para a determinação do NO2-, foi observado uma relação linear entre a corrente de pico e a concentração desse íon dentro do intervalo de concentração de 1,0 x 10-5 molL-1 a 1,1 x 10-4 molL-1, com um limite de detecção igual a 1,151 ± 0,091 µmolL-1 e limite de quantificação igual a 3,838 ± 0,091 µmolL-1. Para a determinação do NO3-, também foi observado uma relação linear entre corrente de pico e concentração desse analito dentro do intervalo estudado, que foi de 2,00 x 10-5 molL-1 a 2,50 x 10-4 molL-1. O limite de detecção encontrado foi 4,839 ± 0,275 µmolL-1 e o limite de quantificação 16,131 ± 0,275 µmolL-1. A determinação sequencial de nitrito e nitrato foi avaliada dentro do intervalo de concentração de 5,00 x 10-5 molL-1 a 2,50 x 10-4 molL-1 para NO3- e 1,00 x 10-5 molL-1 a 4,50 x 10-5 para NO2-. Para ambos os casos, a relação entre corrente de pico versus concentração do analito foi linear. Para a determinação sequencial os limites de detecção são 16,177 ± 0,794 µmolL-1 para NO3- e 2,243 ± 0,179 µmolL-1 para NO2- e os limites de quantificação são 53,922 ± 0,794 µmolL-1 para o NO3- e 7,476 ± 0,179 µmolL-1 para o NO2-. Os limites de detecção, os limites de quantificação e demais parâmetros estatísticos apresentados nesse trabalho, foram obtidos a partir de cálculos baseados em procedimentos descritos em Miller e Miller68 e Silva69. / This work describes the development of an electroanalytical method for sequential determination of nitrite (NO2-) and nitrate (NO3-), using as a technique, differential pulse voltammetry. The method is based on the electrochemical reduction of nitrate ions on a gold ultramicroelectrode modified in situ by underpotential deposition of cadmium, and subsequently, the removal of cadmium monolayer and the electrochemical oxidation of nitrite on ultramicroelectrode unmodified. The voltammetric analysis for quantitative determination of nitrate and nitrite were carried out in NaClO4 0.1 molL-1 + HClO4 1.0 x 10-3 molL-1 (pH = 3.3) prepared with ultrapure water. Using the optimized experimental conditions and voltammetric parameters, analytical curves were constructed for determination of nitrite and nitrate separately and for sequential determination of the two analytes. The relationship between peak current and concentration of NO2- were found to be linear in the concentration range between 1.0 x 10-5 molL-1 and 1.1 x 10-4 molL-1, with a detection limit of 1.151 ± 0.091 µmolL-1 and quantification limit of 3.838 ± 0.091 µmolL-1. For determination of NO3- was also observed a linear relationship between peak current and concentration of analyte within the concentration range studied, which was from 2.00 x 10-5 molL-1 to 2.50 x 10-4 molL-1. The detection limit was 4.839 ± 0.275 µmolL-1 and the quantification limit was 16.131 ± 0.275 µmolL-1. The sequential determination of nitrite and nitrate was assessed within concentration range from 5.00 x 10-5 molL-1 to 2.50 x 10-4 molL-1 for NO3- and from 1.00 x 10-5 molL-1 to 4.50 x 10-5 for NO2-. In both cases, the relationship between peak current versus analyte concentration were found to be linear. The detection limits for sequential determination are 16.177 ± 0.794 µmolL-1 for NO3- and 2.243 ± 0.179 µmolL-1 for NO2- and the quantification limits are 53.922 ± 0.794 µmolL-1 for NO3- and 7.476 ± 0.179 µmolL-1 for NO2-. The detection and quantification limits and other statistical parameters presented in this work were obtained from calculations based on procedures described in Miller and Miller68 and Silva69.
|
20 |
Réduction électrochimique des ions nitrate et nitrite sur électrode de cuivre, en milieu neutre: Apport à la compréhension du mécanisme réactionnel.Aouina, Nizar 04 January 2010 (has links) (PDF)
Au cours de ce travail, le mécanisme réactionnel de réduction des ions nitrate à une électrode de cuivre en milieu neutre a été étudié et comparé aux résultats obtenus en milieux acide et alcalin. Pour ce faire, des études avec un des intermédiaires réactionnels, les nitrites, ont également été menées. En présence d'ions nitrate, trois vagues de réduction apparaissent sur le voltampérogramme vers -0,9, -1,2 et -1,3 V/ECS. Des mesures avec une électrode tournante nous ont permis de déterminer le nombre d'électrons échangés pour chaque vague, à savoir 2 (nitrites), 6 (hydroxylamine) et 8 (ammoniaque). Ces résultats ont été confirmés par voltampérométrie cyclique. Des électrolyses prolongées ont été effectuées en présence d'ions nitrate, à trois potentiels. Les analyses par spectrométrie UV-vis ont permis de détecter la présence de nitrites, hydroxylamine et ammoniaque au sein du catholyte. L'analyse par DEMS de la phase aqueuse a mis en évidence la production de protoxyde d'azote N2O à -1,2 V/ECS. Par ailleurs, une étude a été menée afin expliquer le blocage progressif de l'électrode de cuivre observé lors de la réduction des ions nitrate dans une cellule électrochimique à un seul compartiment. Ce blocage pourrait provenir du masquage des sites d'adsorption des ions nitrate par NO, ce dernier étant produit à la contre électrode suite à l'oxydation de l'ammoniaque par les radicaux hydroxyle. Enfin, la présence systématique d'une branche inductive sur les spectres d'impédance électrochimique (SIE) relevés lors de la réduction des ions nitrate constitue la signature d'un intermédiaire adsorbé impliqué dans le processus réactionnel. Finalement, l'étude SIE sur électrode tournante nous a permis de déterminer le coefficient de diffusion des ions nitrate à 25°C, valeur sur laquelle existait une certaine confusion dans la littérature. Cette valeur a conduit à une détermination précise du nombre d'électrons échangés lors de la réduction des ions nitrate.
|
Page generated in 0.0547 seconds