• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 45
  • 27
  • 27
  • 27
  • 27
  • 27
  • 27
  • 13
  • 6
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 193
  • 193
  • 142
  • 41
  • 35
  • 30
  • 22
  • 20
  • 20
  • 19
  • 17
  • 14
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Carbon and nitrogen dynamics on a forest site receiving continual papermill sludge applications: a soil column study

Duncan, Carla S. 10 October 2009 (has links)
Successful renovation of wastewater and sludge via land application depends upon sludge-induced soil changes associated with carbon (C) and nitrogen (N) cycles within the soil/plant system. The C, N, and hydrologic cycles within a soil/sludge system receiving a year-round, daily application of paper mill sludge were studied. Soil samples were collected from three locations on a land application site in the Piedmont of Virginia that had received papermill sludge applications for six, two, and no prior years. The average application rate was 4.4 cm/wk, each week of the year, with a N loading of 700 kg N ha⁻¹yr-⁻¹. The column study showed that C and N were still accumulating on the land application site after 6 years, but at a decreasing rate. Based on this study, C accumulation will level out after 13 years of application, but N will continue to accumulate for almost 30 years. As application period increased, soil bulk density increased in the O, A, and B horizons, the percentage of non-capillary porosity fell below 10% in the A horizon and approached zero in the B horizon, and there was a dramatic decrease in the soil's hydraulic conductivity in both the A and B horizons. Nitrogen leaching is expected to increase with time due to high amounts of N in the papermill sludge, a continued narrowing of the C:N ratio, a high percentage of nitrification, and low denitrification rates. Experimental timing and rates of sludge additions were imposed to alter the aerobic/anaerobic properties of the soil system to determine the conditions under which optimum C and N mineralization, nitrification, and denitrification would occur. Application rates were factorially arranged for single or multiple doses on a daily or alternating schedule. The C decomposition and N mineralization processes were both optimized with an increase in the length of cycle; they were maximized with an alternating 9 days on/9 off application schedule. The nitrification potential also increased with the length of cycling, with an average nitrification rate of 96%. Denitrification was minimal in all treatments, with an average denitrification rate of 16%. This was primarily attributed to movement of nitrate-N below the most biologically active zone in the soil column. Sludge renovation will ultimately depend upon the excess N being sequestered in plant biomass or denitrified. Proper management of these processes will ensure that wastes decompose, and that N is stored or evolved as a benign gas rather than leached at unacceptable levels. / Master of Science
162

Water Requirements, Use Efficiency, and Insect Infestation in Brussels Sprouts, and Nitrogen Use Efficiency in Sweet Basil under Low Tunnels compared to Open-field Production

Acharya, Tej Prasad 04 January 2019 (has links)
Sustainable vegetable production is one of the most active areas of vegetable research and of concern to all producers. Everyone, both producers and consumers, are concerned with sustainability. Brussels sprouts and sweet basil are high value commodities, but increasing global concerns about water availability, insect-pest problems, and costly fertilizer inputs severely impact the growth and production of these crops. Low tunnels covered with spun-bonded fabric can improve production of vegetables and herbs in Virginia and the U.S. This study investigated the performance of Brussels sprouts and basil grown under low tunnels (LTs), and their relationship with water use efficiency, nitrogen use efficiency, and the level of protection against insect injury. Low tunnels increased yield, number of sprouts, and water use efficiency of Brussels sprout production. In addition, LTs decreased irrigation requirements, irrigation events, leaf feeding injury, and insect populations in comparison to open field. Similarly, LTs increased summer production of sweet basil as measured by fresh weight and biomass. In addition, plant N uptake was greater under the LTs; however, the increase in nitrogen use efficiency was inconsistent. / Master of Science in Life Sciences / Brussels sprouts and sweet basil are economically important cash crops on the East Coast. Brussels sprouts is a Cole crop and an important source of dietary fiber, vitamins (A, C & K), calcium, iron, manganese and antioxidants. Similarly, sweet basil is a member of the mint family and important high-value herb in the U.S. and the world. It is mainly grown for culinary purposes as a dried and fresh spice in the U.S. However, demand for these commodities is increasing. Low tunnels (LTs) covered with spunbonded fabric can be a practical management tool to increase yield. Results from this study indicate that LTs increase yield of Brussels sprouts and basil, water use efficiency and total nitrogen uptake, while reducing insect pest infestation. Therefore, LTs can be a useful tool to improve sustainability of Brussels sprouts and basil production.
163

Untersuchungen zur genotypischen und phänotypischen Variabilität verschiedener Schilfklone (Phragmites australis)

Zemlin, Rüdiger 21 September 2004 (has links)
In der vorliegenden Arbeit werden Wachstum und Entwicklung von 10 Schilfklonen (Phragmites australis) verglichen, um die genotypische Determinierung verschiedener Eigenschaften sowie den Einfluss der Standortfaktoren auf diese Eigenschaften zu untersuchen. Dabei sollen Aussagen zum Bestehen unterschiedlicher Ökotypen beim Schilf abgeleitet werden. Die Untersuchungen erfolgten auf sechs Pflanzfeldern, die im Rahmen von Renaturierungsmaßnahmen an den Ufern der Berliner Gewässer Seddinsee, Langer See und Havel im Frühjahr 1995 angelegt wurden. Die Anpflanzung erfolgt am Land, das Schilf wuchs in das Wasser vor. Die Herkunftsorte der Schilfklone unterschieden sich in der Nährstoffversorgung, der Substratqualität und der Exposition. Die Ergebnisse ließen deutliche Unterschiede in der Morphometrie der Halme (Halmlänge, Halmdurchmesser, Blattfläche pro Halm), der Halmbiomasse und der Balance zwischen Halmdichten und Halmlängen (bzw. Trockenmassen) zwischen den einzelnen Schilfklonen erkennen. Da dies beim Wachstum unter vergleichbaren Standortbedingungen gefunden wurde, kann eine genotypische Determinierung dieser Eigenschaften vermutet werden. Es konnte ebenfalls ein starker Einfluss der Umwelt auf das Wachstum des Schilfs festgestellt werden. Allgemein waren die Wachstumsbedingungen im Wasser deutlich besser als am Land. Die höchsten Halmbiomassen der einzelnen Schilfklone wurden daher im Wasser erreicht (zwischen 0,7 und 2,1 kg Trockenmasse pro m²), während die Werte am Land geringer waren (zwischen 0,6 und 1,0 kg/m²). Obwohl sich die Schilfklone an ihren ursprünglichen Standorten deutlich in den Stickstoffgehalten der Halme unterschieden, ergaben sich auf den Pflanzungen keine Unterschiede zwischen ihnen. Im Gegensatz dazu lagen die N-Werte bei jedem Schilfklon im Wasser erheblich höher als am Land. Dies lässt folgern, dass die Stickstoffgehalte der Halme in erster Linie vom Stickstoff-Angebot am jeweiligen Standort abhängen. Insgesamt deuten die Ergebnisse darauf hin, dass die Schilfklone genotypische Unterschiede in verschiedenen Merkmalen aufweisen können. Eine mögliche Nutzung zu einer Verbesserung des Erfolges von Pflanzmaßnahmen wird diskutiert. / In this study, growth and development of 10 reed clones (Phragmites australis) were compared to investigate genetically determined differences in various characteristics as well as the influence of site conditions on these characteristics. In addition, conclusions on the existence of different ecotypes were to be drawn. The study was performed on six experimental fields, established for shore renaturation on the lakes Seddinsee, Langer See and on the river Havel in Berlin in spring 1995. The plantations were established ashore, the reed expanded into the water. The sites of origin of the clones differed in nutrient supply, substrate quality and shore exposition. The results showed distinct differences between the individual reed clones regarding the morphometrics of the shoots (shoot length, culm diameter, leaf area per shoot), standing crop and the trade-off between shoot length (or dry matter) and shoot density. The fact that these results were found with clones that had grown under comparable site conditions seems to suggest a genotypic determination of these characteristics. A strong influence of the environment on the growth of the reed could also be deserved. In general, the conditions for growth were better in water than ashore. The highest standing crops of the individual reed clones were reached in water (between 0.7 and 2.1 kg drymatter pro m²), while the values ashore were lower (between 0.6 and 1.0 kg/m²). Although the reed clones at their original sites were clearly different in the nitrogen content of shoots, no differences were observed on the experimental fields. In contrast, the N-values of each clone were higher in water than ashore. This suggests that the nitrogen content of the shoots depends primarily on the nitrogen availability at the specific site. The results overall suggest that reed clones could exhibit genetically determined differences in various characteristics. A possible practical use to increase the efficiency of further reed plantations is discussed.
164

Nitrogen cycling in oxygen deficient zones : insights from [delta]¹⁵N and [delta]¹⁸O of nitrite and nitrate

Buchwald, Carolyn January 2013 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2013. / In title on title page, "[delta]" appears as lower case Greek letters. Cataloged from PDF version of thesis. / Includes bibliographical references. / The stable isotopes, [delta]¹⁵N and [delta]¹⁸O, of nitrite and nitrate can be powerful tools used to interpret nitrogen cycling in the ocean. They are particularly useful in regions of the ocean where there are multiple sources and sinks of nitrogenous nutrients, which concentration profiles alone cannot distinguish. Examples of such regions are "oxygen deficient zones" (ODZ). They are of particular interest because they are also important hot spots of fixed N loss and production of N₂O, a potent greenhouse gas. In order to interpret these isotope profiles, the isotope systematics of each process involved must be known so that we can distinguish the isotopic signature of each process. One of the important processes to consider here is nitrification, the process by which ammonium is oxidized nitrite and then to nitrate. This thesis describes numerous experiments using both cultures of nitrifying organisms as well as natural seawater samples to determine the oxygen isotope systematics of nitrification. These experimental incubations show that the accumulation of nitrite has a large effect on the resulting [delta]¹⁸ONO3. In experiments where nitrite does not accumulate, [delta]¹⁸ONO3 produced from nitrification is between -1 to l%o. These values will be applicable for the majority of the ocean, but the nitrite isotopic exchange will be important in the regions of the ocean where nitrite accumulates, such as the base of the euphotic zone and oxygen deficient zones. [delta]¹⁸ONO2 was developed as a unique tracer in this thesis because it undergoes abiotic equilibration with water [delta]¹⁸O at a predictable rate based on pH, temperature and salinity. This rate, its dependencies, and how the [delta]¹⁸ONO2 values can be used as not only biological source indicators but also indicators of age are described. This method was applied to samples from the primary nitrite maximum in the Arabian Sea, revealing that the dominant source and sinks of nitrite are ammonia oxidation and nitrite oxidation with an average age of 37 days. Finally, using the isotope systematics of nitrification as well as the properties of nitrite oxygen isotope exchange described in this thesis, the final chapter interprets multiisotope nitrate and nitrite profiles in the Costa Rica Upwelling Dome using a simple ID model. The nitrite isotopes showed that there were multiple sources of nitrite in the primary nitrite maximum including (1) decoupling of ammonia oxidation and nitrite oxidation, (2) nitrate reduction during assimilation and leakage of nitrite by phytoplankton. In the oxygen deficient zone and secondary nitrite maximum, there were equal contributions of nitrite removal from nitrite oxidation and nitrite reduction. This recycling of nitrite to nitrate through oxidation indicates that the percentage of reduced nitrate fully consumed to N2 gas is actually smaller than previous estimates. Overall, this thesis describes new nitrogen and oxygen isotopic tracers and uses them to elucidate the complicated nitrogen biogeochemistry in oxygen deficient zones. / by Carolyn Buchwald. / Ph.D.
165

Variação hídrica e fontes de nitrogênio em cultivares de arroz de terras altas: produção e qualidade fisiológica de sementes / Hydric variation and nitrogen sources in upland rice cultivars: production and physiological quality of seeds

Peres, Amanda Ribeiro [UNESP] 24 February 2017 (has links)
Submitted by AMANDA RIBEIRO PERES null (amandarperes_agro@yahoo.com.br) on 2017-03-19T14:03:44Z No. of bitstreams: 1 Amanda Ribeiro Peres-TESE-Agronomia.pdf: 4734675 bytes, checksum: 5a4d70ca13fe949ff04fcd755564e8c4 (MD5) / Approved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2017-03-22T13:06:45Z (GMT) No. of bitstreams: 1 peres_ar_dr_ilha.pdf: 4734675 bytes, checksum: 5a4d70ca13fe949ff04fcd755564e8c4 (MD5) / Made available in DSpace on 2017-03-22T13:06:45Z (GMT). No. of bitstreams: 1 peres_ar_dr_ilha.pdf: 4734675 bytes, checksum: 5a4d70ca13fe949ff04fcd755564e8c4 (MD5) Previous issue date: 2017-02-24 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Dentre os desafios atuais da agricultura, estão a racionalização do uso da água, aumento da produtividade e redução das perdas de nutrientes. Para isso, deve-se avaliar técnicas de otimização ou redução da utilização da água, como o uso de cultivares mais adaptadas a estresses hídricos e, a aplicação de fertilizantes melhor aproveitados pelas plantas. Recentemente foi lançado no mercado o cultivar de arroz BRS Esmeralda que tem como características maior tolerância ao estresse hídrico e elevado potencial produtivo. Diante disso, o objetivo deste trabalho foi avaliar o efeito da variação hídrica e fontes de N em cultivares de arroz de terras altas sobre o teor de N foliar, desempenho agronômico, produtividade, qualidade industrial e qualidade fisiológica de sementes produzidas. O experimento foi desenvolvido na Fazenda de Ensino e Pesquisa da Unesp, campus de Ilha Solteira, localizada no município de Selvíria-MS e no laboratório de sementes em Ilha Solteira-SP, em 2013/14 e 2014/15. O tipo de solo é um LATOSSOLO VERMELHO Distrófico típico argiloso. O experimento foi realizado em duas etapas: produção em campo e avaliação da qualidade fisiológica das sementes produzidas. O delineamento experimental em campo foi o de blocos casualizados em esquema de parcelas sub-subdividas, sendo constituído de três variações hídricas nas parcelas (irrigação com a lâmina recomendada para o arroz + precipitação; irrigação com a lâmina de 75% da recomendada + precipitação; e sem irrigação + precipitação, ou seja, sequeiro), de dois cultivares nas subparcelas (IAC 202 e BRS Esmeralda) e de quatro fontes de nitrogênio nas sub-subparcelas (ureia, sulfato de amônio, ureia + sulfato de amônio e ureia revestida), com quatro repetições. Observou-se que a redução da disponibilidade de água atrasou o florescimento e a maturação, e diminuiu a produção de matéria seca. As fontes de nitrogênio não diferiram quanto ao teor de nitrogênio foliar e na planta, a quantidade de nitrogênio acumulado na planta e a produtividade de grãos de arroz de terras altas cultivado em sequeiro ou sob irrigação por aspersão. Em ano com incidência de veranico no estádio reprodutivo, houve redução da produtividade de grãos do sequeiro em relação a irrigação por aspersão com as lâminas recomendada e 75% da recomendada, sendo maior a redução em cultivar com ciclo mais curto (BRS Esmeralda). Já em ano em que a deficiência hídrica ocorreu na fase vegetativa não houve interferência da variação hídrica sobre a produtividade de grãos, e o cultivar BRS Esmeralda proporcionou maior produtividade. A qualidade fisiológica das sementes do cultivar IAC 202 em ano com período de altas temperaturas na fase reprodutiva foi maior nas condições de sequeiro em comparação as lâminas de irrigação. Já em ano sem ocorrência de altas temperaturas na fase reprodutiva a maior qualidade de sementes ocorreu nos tratamentos irrigados em comparação ao sequeiro para o cultivar IAC 202. O acamamento do cultivar BRS Esmeralda nos tratamentos com irrigação por aspersão resulta em produção de sementes de menor qualidade em comparação ao sequeiro. As fontes de nitrogênio não diferiram em relação a qualidade fisiológica das sementes. / The rationalization of water use, the increase in productivity and the reduction of nutrient losses are among the current challenges of agriculture. For this, it is necessary to evaluate techniques of optimization or reduction of water use, such as the use of cultivars more adapted to water stresses, and the application of fertilizers better utilized by plants. Recently, the upland rice cultivar BRS Esmeralda, more tolerant to drought and with high productive potential, was released in the market. Thus, the objective of this study was to evaluate the effect of the hydric variation and nitrogen sources in topdressing in upland rice cultivars on the leaf nitrogen content, agronomic performance, yield, industrial quality and physiological quality of the seeds produced. The experiment was conducted at the Education and Research Farm of Unesp, Ilha Solteira campus, located in Selvíria-MS and in the seed laboratory in Ilha Solteira-SP, in 2013/14 and 2014/15. The soil of the area is a Dystrophic RED LATOSOL (Oxisol) with a clayey texture. The experiment was performed in two stages: field production and evaluation of the physiological quality of the seeds produced. The experiment conducted in the field consisted of randomized blocks in a split-split plot design, with three hydric variations as plots (irrigation with a recommended water depth for rice + rainfall; irrigation with 75% of the recommended water depth + rainfall; and without irrigation + rainfall – “rainfed”), two cultivars as subplots (IAC 202 and BRS Esmeralda) and four nitrogen sources as sub-subplots (urea, sulfate, urea + sulfate and coated urea), with four replications. The reduction in water availability delayed the flowering and ripening and reduced the production of dry matter. Nitrogen sources did not differ in terms of the leaf and plant nitrogen content, the amount of nitrogen accumulated in the plant, and grains productivity of upland rice grown in the rainfed or under sprinkler irrigation. In the year with dry spell during the reproductive stage, there was a reduction of the grains productivity of the rainfed in relation to sprinkler irrigation with the recommended and 75% of the recommended depths, being greater the reduction in cultivar with shorter cycle (BRS Esmeralda). On the other hand, there was no interference of hydric variation on grain yield in a year with water deficit during the vegetative stage, and the BRS Esmeralda cultivar provided higher productivity. The physiological quality of the seeds of the cultivar IAC 202 was higher in the rainfed conditions compared to the irrigation depths in year with period of high temperatures in the reproductive stage. However, in the year without occurrence of high temperatures in the reproductive stage, the highest seeds quality occurred in the irrigated treatments in comparison to the rainfed for the cultivar IAC 202. The lodging of the BRS Esmeralda cultivar in the treatments with sprinkler irrigation results in the seeds production of lower quality in comparison to the rainfed. Nitrogen sources did not differ in relation to the physiological quality of the seeds.
166

Management of nitrogen from underseeded clover and manures in spring wheat

Garand, Marie-Josée. January 1999 (has links)
No description available.
167

The effect of fallowing on water and nitrate supply, and on the yield of wheat in South Australia

French, R. J. (Reginald James) January 1966 (has links) (PDF)
Typescript Includes bibliographical references
168

Studies of forms of nitrogen in streams near Adelaide, South Australia

Holmes, Allan Norman. January 1978 (has links) (PDF)
Includes bibliographical references (p. 96-102)
169

Deep soil nitrogen survey, Lower Umatilla Basin, Oregon

del Nero, Zachary Augustus 14 July 1994 (has links)
Soils of 49 agricultural and 2 "native condition" sites in the Lower Umatilla Basin, Oregon were sampled for nitrate-nitrogen, ammonium-nitrogen, chloride, and pH beginning in Fall of 1992. Several sites were sampled in Spring and Fall 1993 in order to indicate movement or loss of residual soil nitrogen over time. This study was prompted by current concern over contamination of public drinking water supplies by nitrate and the designation of over 550 square miles of this region as a Ground Water Management Area. This study sought to identify links between agricultural management practices-primarily irrigation, fertilization, and crop rotation systems, and deep soil nitrate levels. Soil profiles were divided into 3 "management zones:" 0-3', 3-6', and beyond 6' in depth. These depths represent average rooting depths for the major agricultural crops of the study area. In general, the effective rooting depth of most area-crops does not extend beyond 6', therefore, it was determined that residual soil-nitrate found at this depth or beyond may be a potential source of ground water contamination if not managed correctly. Results of the study indicate that proper management of irrigation, fertilization, and cropping rotation can significantly reduce the potential for contaminating ground water. Deep soil nitrate levels under most agricultural fields were consistent with the concept that some loss of nitrate below the root zone is inevitable, however, this condition can be minimized through intensive crop management. This study concludes that responsible management of agriculture can minimize impacts on ground water, while providing quality food and fiber products to an ever-growing population. In addition, more research is needed in the area of crop physiology and response to intensively managed systems. Such research may provide insight into more efficient methods of crop production and environmental protection. / Graduation date: 1995
170

Remineralization of marine particulate organic matter

Burkhardt, Brian Gary 21 March 2013 (has links)
Marine microorganisms play a significant role in the cycling of nutrients in the open ocean through production, consumption, and degradation of organic matter (OM). Carbon (C), nitrogen (N), and phosphorus (P) are essential ingredients in every known recipe for life. However, the cycling of each of these elements proceeds at different rates such that the ratio of C:N:P can vary widely between particulate, dissolved, organic, and inorganic pools. To better understand the mechanisms controlling these transformations, this study investigated the bacterial remineralization of photosynthetically-derived organic matter derived from cultures of Trichodesmium IMS101, Thalassiosira weissflogii, Prochlorococcus MED4, and particulate material collected from the surface waters of an upwelling regime. Experiments were conducted at sea for a short duration (<6d) and in the laboratory for longer periods (<150 days). In all treatments, across experiments, we observed rapid and selective P remineralization independent of the type of organic material added. Full solubilization and remineralization of P typically occurred within a week. Conversely, N remineralization was slower, with only 39-45% of particulate N (PN) remineralized in shorter (6d) experiments and 55-75% of PN remineralized in <150d experiments. Nitrification was observed after 70-98 days depending on the remineralizing bacteria (isolated from either the Oregon coastal upwelling regime or the North Pacific Subtropical Gyre (NPSG). Notably, these events did not transform the full complement of ammonium to nitrate. This differential lability between N and P led to rapid changes in the N:P ratio of inorganic pools as organic matter was depolymerized by varying bacterial populations. The variable input of potentially limiting elements could have consequences for primary productivity and particle export. Finally, we observed that in short-term experiments with heterotrophic bacteria collected from the NPSG, the N:P ratio of remineralization (11 ± 2.2) was independent of the N:P of added organic material (5-23). This uniformity of inorganic ratios implies differential lability and N:P composition of residual semi-labile and refractory organic matter. Formation of refractory C and N rich organic matter, often termed the microbial pump, is a significant pathway for the transport and sequestration of elements in the aphotic zone of the ocean interior. The experimental results reported here suggest that differential supply of POM leads to rapid and preferential P remineralization, N:P remineralization independent of the N:P of added substrates, and variable N:P of residual organic matter. These findings help constrain our knowledge of elemental cycling in the marine environment. / Graduation date: 2013

Page generated in 0.1163 seconds