Spelling suggestions: "subject:"nitrogen vacancies center""
1 |
Optical and Mechanical Quantum Control of Nitrogen Vacancy Centers in DiamondAmezcua, Mayra 06 September 2018 (has links)
Current proposals for the design of quantum computer architectures include combining different quantum systems with designated tasks to build a device that can efficiently store, process, and transfer quantum information. Electron spins in solid-state quantum systems are a viable platform for storing information in these multi-quantum frameworks. While extensive research has been performed to couple solid-state systems to photons and microwaves, an alternative line of research focuses on coupling these systems to phonons, or mechanical motion. The use of phonons in solid-state devices opens up a new approach to interface different quantum systems.
This dissertation presents experimental progress in developing and controlling a spin-mechanical system, specifically the interaction between the electron spin of a nitrogen vacancy (NV) center in diamond and mechanical vibrations on the surface of the diamond, and discusses theoretical methods for limiting decoherence in the system. To investigate the strain properties of the NV center, we couple acoustic waves to the NV spin via an optical excitation. We transfer population between the spin ground states by driving phonon-assisted optical transitions and demonstrate the formation of a non-radiative state, which can be used to adiabatically transfer population between two states, through the same mechanism. To mitigate the effects of the nuclear spin bath on the NV center, we study and show preliminary results on the semiclassical dressed states, or quantum states of the NV interacting with optical fields. The dressed states can be insensitive to magnetic fluctuations, thus preserving the quantum state of the system. Finally, we consider a transitionless quantum driving technique that decouples the NV center from a radiative state, preventing decoherence through spontaneous emission. These developments are essential in advancing our understanding of phonon-based interfaces between quantum systems.
This dissertation includes previously published and unpublished co-authored material.
|
2 |
COUPLING NITROGEN VACANCY CENTERS IN DIAMOND TO A NANOMECHANICAL OSCILLATOROo, Thein Htay 10 April 2018 (has links)
Exotic aspects of quantum mechanics, such as quantum entanglement, can be exploited to solve computational problems that are impractical to solve with conventional computers. With the realization of robust solid-state qubits, such as Nitrogen Vacancy (NV) centers in diamond, an outstanding challenge is to develop experimental approaches that can control the interactions between individual qubits. This dissertation develops a diamond-based experimental system that exploits acoustic waves or mechanical vibrations to mediate interactions between spin qubits. This spin-mechanical system features three essential elements: robust qubits, high quality-factor diamond nanomechanical resonator, and strong spin- mechanical coupling, thus enabling a new and promising platform for pursuing solid- state quantum computer.
For the spin-mechanical system, NV centers are created near the surface of a bulk diamond through nitrogen ion implantation followed by stepwise high temperature annealing. We successfully suppress environmental fluctuations and achieve NV centers with stable and spectrally narrow (< 50 MHz) fluorescence at low temperature, which is crucial for the spin-mechanical system.
Diamond nanomechanical resonators with a fundamental frequency near 1 GHz have been successfully fabricated with a diamond-on-insulator approach. The resonators are suspended from a silicon substrate and are supported with long and thin tethers, decoupling the mechanical modes from the surrounding environment. Diamond nanofabrication is still in its infancy. Numerous fabrication problems occurring during etching, mask transfer, and wafer bonding have been painstakingly resolved.
Strong spin-mechanical coupling is demonstrated via the strain coupling of the NV excited-states. The spin-mechanical coupling takes place through a 𝚲-type three- level system, where two ground-spin-states couple to an excited-state through a phonon-assisted as well as a direct dipole optical transition. Both coherent population trapping and optically-driven spin transitions have been realized. The coherent population trapping demonstrates the coupling between an acoustic wave and an electron spin coherence through a dark state, thus avoiding the short lifetime of the excited state. The optically-driven spin transitions can enable the quantum control of both spin and mechanical degrees of freedom.
This dissertation includes previously published co-authored material.
|
3 |
Coupling Nitrogen Vacancy Centers in Diamond Nanopillars Whispering Gallery MicroresonatorsDinyari, Khodadad 11 July 2013 (has links)
For cavity quantum electrodynamics systems (cavity-QED) to play a role in quantum information processing applications and in quantum networks, they must be robust and scalable in addition to having a suitable method for the generation, processing and storage of quantum bits. One solution is to develop a composite system that couples a nitrogen vacancy (NV) center in diamond to a whispering gallery mode supported by a fused silica microsphere. Such a system is motivated by the optical and electron-spin properties of the NV center. The NV center is the leading spin-qubit and exhibits atomic like linewidths at cryogenic temperatures and has spin coherence times greater than milliseconds at room temperature. These long coherence times, coupled with nanosecond scale spin readout and manipulation times, allow for millions of quantum operations to be processed. Silica whispering gallery resonators are the only class of microresonators with quality factor high enough to reach the strong coupling regime, which is necessary for some quantum information processing applications.
Integrating these two components into a system that could position a diamond nanopillar near the surface of a deformed-double stemmed microsphere system, with nanometer precision, at 10 K was a major achievement of this research. Cavity resonances in deformed microspheres can be excited with a free-space coupling technique which simplifies their integration into cryogenic environments. In these intentionally deformed resonators, an enhanced evanescent field decay length was observed at specific locations along the ray orbit. The double-stem arrangement enables the cavity resonance to be tuned over 450 GHz, with sub-10 MHz resolution, at 10 K. These two features, the enhanced decay length and broad range tuning with high resolution, are indispensible tools for cavity-QED studies with silica microspheres.
Diamond nanopillars were fabricated from single crystal diamond with diameters as small as 140 nm in order to maintain a high quality factor. Studies were conducted on NV centers in nanopillars and bulk diamond to determine their suitability for cavity-QED applications. In an attempt to increase the light-matter interaction between NV centers and whispering gallery modes, diamond substrates were optically characterized that were irradiated with nitrogen ions.
|
4 |
Ultra-small diamond quantum sensor for bioapplications / 生物学応用のための超小型ダイヤモンド量子センサーTerada, Daiki 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22465号 / 工博第4726号 / 新制||工||1738(附属図書館) / 京都大学大学院工学研究科分子工学専攻 / (主査)教授 関 修平, 教授 水落 憲和, 准教授 菅瀬 謙治, 教授 梶 弘典 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
|
5 |
Internal modification and functionality control of transparent materials by femtosecond laser irradiation / フェムト秒レーザー照射による透明材料内部改質および機能制御Kurita, Torataro 24 May 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23388号 / 工博第4880号 / 新制||工||1763(附属図書館) / 京都大学大学院工学研究科材料化学専攻 / (主査)教授 三浦 清貴, 教授 田中 勝久, 教授 藤田 晃司 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
|
6 |
ダイヤモンドナノ粒子の生体計測応用に関する研究 / APPLICATION OF NANODIAMONDS FOR BIOLOGICAL INVESTIGATION外間, 進悟 23 March 2015 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第19002号 / 工博第4044号 / 新制||工||1622 / 31953 / 京都大学大学院工学研究科分子工学専攻 / (主査)教授 白川 昌宏, 教授 田中 庸裕, 教授 濵地 格 / 学位規則第4条第1項該当
|
7 |
Topics in Nanophotonic Devices for Nitrogen-Vacancy Color Centers in DiamondBabinec, Thomas Michael January 2012 (has links)
Recently, developments in novel and high-purity materials allow for the presence of a single, solitary crystalline defect to define the electronic, magnetic, and optical functionality of a device. The discrete nature of the active dopant, whose properties are defined by a quantum mechanical description of its structure, enables radically new quantum investigations and applications in these arenas. Finally,there has been significant development in large-scale device engineering due to mature semiconductor manufacturing techniques. The diverse set of photonic device architectures offering light confinement, guiding, and extraction is a prime example. These three paradigms – solitary dopant photonics and optoelectronics (solotronics), quantum science and technology, and device engineering – merge in the development of novel quantum photonic devices for the next generation of information processing systems. We present in this thesis a series of investigations of optical nanostructures for single optically active spins in single crystal diamond. Chapter 1 introduces the Nitrogen-Vacancy (NV) color center, summarizes its applications, and motivates the need for their integration into photonic structures. Chapter 2 describes two prototype nanobeam photonic crystal cavities for generating strong light-matter interactions with NV centers. The first device consists of a silicon nitride photonic crystal nanobeam cavity with high quality factor \(Q \sim 10^5\) and small mode volume \(V \sim 0.5*(\lambda/n)^3\). The second device consists of a monolithic diamond nanobeam cavity fabricated with the focused ion beam (FIB) directly in a single crystal diamond sample. Chapter 3 presents a high-efficiency source of single photons consisting of a single NV center in a photonic diamond nanowire. Early FIB prototypes are described, as is the first successful realization of the device achieved via reactive ion etching nanowires in a single crystal diamond containing NV centers, and finally a variation of this approach based on incorporation of NV centers in pure diamond via ion implantation. In chapter 4 we consider the optimal design of photonic devices offering both collection efficiency and cavity-enhancements and extend the model of the NV center to include photonic effects. In chapter 5 we briefly introduce a novel optically active spin discovered in a diamond nanowire. Finally, in chapter 6 we conclude with several proposals to extend this research program. / Engineering and Applied Sciences
|
8 |
Nanoscale Magnetic Imaging with a Single Nitrogen-Vacancy Center in DiamondHong, Sungkun 18 March 2013 (has links)
Magnetic imaging has been playing central roles not only in fundamental sciences but also in engineering and industry. Their numerous applications can be found in various areas, ranging from chemical analysis and biomedical imaging to magnetic data storage technology. An outstanding problem is to develope new magnetic imaging techniques with improved spatial resolutions down to nanoscale, while maintaining their magnetic sensitivities. For instance, if detecting individual electron or nuclear spins with nanomter spatial resolution is possible, it would allow for direct imaging of chemical structures of complex molecules, which then could bring termendous impacts on biological sciences. While realization of such nanoscale magnetic imaging still remains challenging, nitrogen-vacancy (NV) defects in diamond have recently considered as promising magnetic field sensors, as their electron spins show exceptionally long coherence even at room temperature. This thesis presents experimental progress in realizing a nanoscale magnetic imaging apparatus with a single nitrogen-vacancy (NV) color center diamond. We first fabricated diamond nanopillar devices hosting single NV centers at their ends, and incorporated them to a custom-built atomic force microscope (AFM). Our devices showed unprecedented combination of magnetic field sensitivity and spatial resolution for scanning NV systems. We then used these devices to magnetically image a single isolated electronic spin with nanometer resolution, for the first time under ambient condition. We also extended our study to improve and generalize the application of the scanning NV magnetometer we developed. We first introduced magnetic field gradients from a strongly magnetized tip, and demonstrated that the spatial resolution can be further improved by spectrally distinguishing identical spins at different locations. In addition, we developed a method to synchronize the periodic motion of an AFM tip and pulsed microwave sequences controlling an NV spin. This scheme enabled employment of 'AC magnetic field sensing scheme' in imaging samples with static and spatially varying magnetizations. / Engineering and Applied Sciences
|
9 |
Coherent control of diamond defects for quantum information science and quantum sensingMaurer, Peter 06 June 2014 (has links)
Quantum mechanics, arguably one of the greatest achievements of modern physics, has not only fundamentally changed our understanding of nature but is also taking an ever increasing role in engineering. Today, the control of quantum systems has already had a far-reaching impact on time and frequency metrology. By gaining further control over a large variety of different quantum systems, many potential applications are emerging. Those applications range from the development of quantum sensors and new quantum metrological approaches to the realization of quantum information processors and quantum networks. Unfortunately most quantum systems are very fragile objects that require tremendous experimental effort to avoid dephasing. Being able to control the interaction between a quantum system with its local environment embodies therefore an important aspect for application and hence is at the focus of this thesis. / Physics
|
10 |
Quantum Sensing of Photonic Spin Density with Spin QubitsFarid Kalhor (11820050) 19 December 2021 (has links)
<div>Optical signals are a necessary tool for quantum technologies to carry information both for long-range and on-chip application. The scope of their use is determined by their ability to effectively interact with qubits. The deep-subwavelength interaction volume demands the understanding of the properties of optical fields in the near-field and light-matter interaction in this regime. Recent studies have unraveled the rich characteristics in the physical quantity known as the near-field photonic spin density (PSD). Photonic spin density is the spatial distribution of light's spin angular momentum. It is characterized by the degree of circular polarization of an optical field in deep-subwavelength volumes. In this thesis we study the properties of PSD in the near-field regime and demonstrate a platform for coherent light-spin-qubit interaction based on PSD. We show that nitrogen-vacancy (NV) centers in diamond can coherently interact with an optical beam where the interaction strength is determined by PSD in the nanoscale. To understand the near-field characteristics of PSD we study the evanescent waves and spin-momentum locking of light.</div><div><br></div><div>Evanescent electromagnetic waves possess spin-momentum locking, where the direction of propagation (momentum) is locked to the inherent polarization of the wave (transverse spin). We study the optical forces arising from this universal phenomenon and show that the fundamental origin of recently reported optical chiral forces is spin-momentum locking. For evanescent waves, we show that the direction of energy flow, direction of decay, and direction of spin follow a right hand rule for three different cases of total internal reflection, surface plasmon polaritons, and HE<sub>11</sub> mode of an optical fiber.</div><div>Furthermore, we explain how the recently reported phenomena of lateral optical force on chiral and achiral particles is caused by the transverse spin of the evanescent field and the spin-momentum locking phenomenon. Our work presents a unified view on spin-momentum locking and how it affects optical forces on chiral and achiral particles. </div><div><br></div><div>To probe the near-field properties of PSD, we propose and employ a single NV center in diamond as a nanoscale sensor. NV centers have emerged as promising room-temperature quantum sensors for probing condensed matter phenomena ranging from spin liquids, two-dimensional (2D) magnetic materials, and magnons to hydrodynamic flow of current. Here, we demonstrate that the NV center in diamond can be used as a quantum sensor for detecting the photonic spin density. We exploit a single spin qubit on an atomic force microscope tip to probe the spinning field of an incident Gaussian light beam. The spinning field of light induces an effective static magnetic field in the single spin qubit probe. We perform room-temperature sensing using Bloch sphere operations driven by a microwave field (XY8 protocol). This nanoscale quantum magnetometer can measure the local polarization of light in ultra-sub-wavelength volumes. We also put forth a rigorous theory of the experimentally measured phase change using the NV center Hamiltonian and perturbation theory involving only virtual photon transitions. </div><div><br></div><div>In order to study the wavelength dependence of the optically induced magnetic field, we demonstrate this effect for an ensemble of NV centers. We characterize the wavelength dependence of the effective static magnetic field caused by the interaction of PSD and the spin qubit. We show that the strength of the field is inversely dependent on the detuning between the frequency of the optical beam and the optical transition of the NV centers. We show an optically induced rotation of over 10 degrees in the spin qubit of NV centers at room temperature. The direct detection of the photonic spin density at the nanoscale using NV centers in diamond opens interesting quantum metrological avenues for studying exotic phases of photons, nanoscale properties of structured light as well as future on-chip applications. </div><div><br></div>
|
Page generated in 0.086 seconds