• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2312
  • 603
  • 320
  • 318
  • 305
  • 144
  • 73
  • 42
  • 38
  • 37
  • 29
  • 19
  • 18
  • 15
  • 12
  • Tagged with
  • 5438
  • 661
  • 552
  • 537
  • 502
  • 461
  • 428
  • 409
  • 332
  • 312
  • 311
  • 301
  • 293
  • 274
  • 267
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
911

Novel methods of transduction for active control of harmonic sound radiated by vibrating surfaces

Burgemeister, Kym A. January 1996 (has links)
Large electric transformers such as those used in high voltage substations radiate an annoying low frequency hum into nearby communities. Attempts have been made to actively control the noise by placing a large number of loudspeakers as control sources around noisy transformers to cancel the hum. These cancellation systems require a large number of loudspeakers to be successful due to the imposing size of the transformer structures. Thus such systems are very expensive if global noise reduction is to be achieved. The aim of this thesis is to investigate theoretically and experimentally the use of thin perforated panels closely placed to a heavy structure to reduce the radiation of unwanted harmonic noise. These panels can themselves be vibrated to form a control source radiating over a large surface surrounding the primary source. The problem of the equipment overheating inside the enclosure is alleviated because the holes in the panels still allow natural cooling. An initial study is carried out to determine the resonance frequencies of perforated panels. The use of previously determined effective elastic properties of the panels and Finite Element Analysis to theoretically calculate their resonance frequencies is examined. Secondly the attenuation provided by active noise control using perforated panels as control sources is explored by use of a coupled analysis, where the primary source is assumed to influence the radiation of the perforated control panel. This analysis was found to predict poorly the amount of attenuation that could be achieved, so an uncoupled analysis is undertaken, where both the primary and control sources are assumed to radiate independently of each other. Not only does this greatly simplify the theoretical analysis but it also enables prediction of attenuation levels which are comparable to those determined experimentally. The theoretical model is reformulated to enable comparison of the sound power attenuation provided by perforated panel control sources with that of traditional acoustic and structural control sources. Finally, the use of modal filtering of traditional acoustic error sensor signals to give transformed mode (or power mode) sensors is examined. The independently radiating acoustic transformed modes of the panel are determined by an eigenanalysis and a theoretical analysis is presented for a farfield acoustic power sensor system to provide a direct measurement of the total radiated acoustic power. The frequency dependence of the sensor system, and the amount of global sound power attenuation that can be achieved is examined. Experimental measurements are made to verify the theoretical model and show that a sound power sensor implemented with acoustic sensors can be used in a practical active noise control system to increase the amount of attenuation that can be achieved. Alternatively the sound power sensor can be used to reduce the number of error channels required by a control system to obtain a given level of attenuation when compared to traditional error criteria. The power mode sensor analysis is then applied to the perforated panel control system, with similar results. / Thesis (Ph.D.)--Engineering (Department of Mechanical Engineering), 1996.
912

Virtual sensors for active noise control.

Munn, Jacqueline M January 2003 (has links)
The need to attenuate noise transmitted into enclosed spaces such as aircraft cabins, automobiles and mining cabins has provided the impetus for many active noise control studies. Studies into active interior noise control began with a pressure squared cost function utilising multiple error sensors and control sources in an attempt to produce global control of the interior sound field. This work found problems with observability of the primary disturbances and a large number of error sensors and control sources were required to produce global control. Since this early work in the 1980's, many new acoustic based cost functions have been developed to improve on the performance of the pressure squared cost function. This thesis will focus on one novel acoustic cost function, virtual error sensing. Virtual error sensing is a relatively new technique which produces localised zones of attenuation at a location remote to the physical sensors. The practical advantage of this method is the people within these enclosed spaces are able to observe a reduction in sound pressure level without their movement being restricted by error sensors located close to their ears. The aim of this thesis is to further investigate the performance of forward-difference virtual error sensors in order to understand the factors that affect the accuracy of the pressure prediction at the virtual location and use this information to develop more accurate and efficient forward- difference virtual sensors. These virtual sensors use linear arrays of microphones containing two or more microphone elements and a linear or quadratic approximation is used to predict the sound at the virtual location. The prediction method determines the weights applied to each microphone signal to predict the sound pressure level at the virtual location. This study investigates susceptibility of the sensors to corruption as a result of phase and sensitivity mismatch between the microphones, as well as in the location of the elements in the error sensing array. A thorough error analysis of the forward-difference virtual microphones was performed in a one-dimensional sound field and in a plane wave sound field. The accuracy of the quadratic virtual microphone was found to be strongly affected by the presence of short wavelength extraneous noise. From this study, two novel virtual error sensing techniques were developed, namely; higher-order virtual sensors and adaptive virtual sensors. The higher-order virtual error sensors still employ the linear and quadratic prediction method but extra microphone elements are added to the array. The aim of these higher-order virtual microphones is to produce a more accurate prediction of the pressure at the virtual location by spatially filtering out any short wavelength extraneous noise that may corrupt the prediction. These virtual sensors were tested in a realtime control scenario in both a one-dimensional reactive sound field and in a free field. This work found that the higher-order virtual microphones can improve the prediction accuracy of the original virtual sensors but are still prone to problems of phase, sensitivity and position errors. Finally, the adaptive LMS virtual sensors were investigated in a SIMULINK simulation and tested experimentally using real-time control in a one-dimensional sound field. It was hoped that an adaptive LMS algorithm could overcome previous difficulties arising from inherent and transducer errors by adapting the weights of the signals from the sensing elements which form the array. The algorithm adapts the sensing microphone signals to produce the same signal as the microphone at the virtual location. Once this has been achieved, the sensing microphone weights are fixed and the microphone at the virtual location is removed, thus creating a virtual microphone. The SIMULINK simulation allowed the performance of the fixed weight and virtual microphones to be investigated in the presence of only phase errors, sensitivity errors and position errors and in the presence of all three combined. This work showed that the adaptive virtual sensors had the ability to compensate for the errors. The number of modes used in the simulations was varied to observe the performance of all virtual sensors in the presence of higher-order modes. The prediction accuracy of the fixed weight virtual sensors was found to be greatly affected by the presence of higher-order modes. The use of the adaptive virtual microphones to produce localised zones of quiet was examined experimentally using real-time control. The study found the real-time control performance is superior to that of the fixed weight higher-order virtual microphones and the original forward-difference virtual microphones. / Thesis (Ph.D.)--School of Mechanical Engineering, 2003.
913

Subcoal seismic exploration in The Gippsland Basin (Australia)

Dunne, Jarrod C. Unknown Date (has links)
Deep seismic exploration in the Gippsland Basin is hindered by strong, unidentified noise below the Latrobe Group coal sequence. Low velocity events that appeared in field data semblance analyses suggested that an elastic wave modelling study was required to understand the subcoal reflection response. The modified reflectivity method (Kennet, 1980) provided a means for constructing detailed and accurate synthetic seismograms from realistic depth models, under the assumption of an isotropic, plane-layered earth. A study into the effect of each part of an elastic depth model (upon an elastic depth model (upon an elastic synthetic seismogram) resulted in a set of guidelines for obtaining a field data comparison. Excellent ties were obtained at several wells, often using little more than a partial sonic log. The noise contributions to the synthesis were interpreted using additional synthetics computed from variations upon the depth model and by exercising control over the wave types modelled. Subsequent processing of the synthetics revealed three types of persistent noise in progressively deeper parts of the subcoal image: 1) mode converted interbed multiples (generated within the coal sequence); 2) S-wave reflections and long period multiples (generated between the coal sequence and the Miocene carbonates and 3) surface related multiples.
914

A dual-path 2-0 MASH ADC with dual digital error correction /

Zhang, Zhenyong. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2007. / Printout. Includes bibliographical references (leaves 76-78). Also available on the World Wide Web.
915

Skalning och brusberäkning av tvåportsadaptorer / Scaling and noisecalculation of twoportadaptor

Samuelsson, Daniel January 2004 (has links)
<p>The goal of this work is to summarize the calculations for scaling and noise of twoportadaptor. Two different methods has been described and used for the final results.</p>
916

Predictive methodologies for substrate parasitic extraction and modeling in heavily doped CMOS substrates

Sharma, Ajit 31 July 2003 (has links)
This thesis presents an automated methodology to calibrate the substrate profile for accurate prediction of substrate parasitics using Green's function based extractors. The technique requires fabrication of only a few test structures and results in an accurate three layered approximation of a heavily doped epitaxial silicon substrate. The obtained substrate resistances are accurate to about 10% of measurements. Advantages and limitations of several common measurement techniques used to measure substrate z-parameters and resistances are discussed. A new and accurate z-parameter based macro-model has been developed that can be used up to a few GHz for P��� for contacts that are as close as 2��m. This enhanced model also addresses the limitations of previous models with regards to implementation aspects and ease of integration in a CAD framework. Limitations of this modeling approach have been investigated. The calibration methodology can be used along with the scalable macromodel for a qualitative pre-design and pre-layout estimation of the digital switching noise that couples though the substrate to sensitive analog/RF circuits. / Graduation date: 2004
917

Suppression of substrate noise in a mixed-signal CMOS intergrated circuit

Lim, Wei Tjan (Richard) 29 May 1996 (has links)
Substrate switching noise is becoming a concern as integrated circuits get larger and speeds get faster. Mixed-mode integrated circuits are especially affected as the substrate noise interferes with sensitive analog circuits resulting in limited signal to noise ratios. This thesis serves to study the cause of the noise at the point where it is generated to the way it propagates to the analog circuits, and presents several approaches to reduce the switching noise. In addition, it examines the substrate impedance as being a key element to successful and reliable design for low-noise CMOS mixed-signal integrated circuits. Utilizing the substrate lead inductance and current-variable capacitances through the use of guard ring diodes, resonant frequencies which provide a low impedance path to ground are created. These can be tuned to coincide with problematic noise frequency components or to cancel the pin and package resonance, thus suppressing noise and improving reliability. / Graduation date: 1997
918

The application of correlation functions in the detection of small signals in noise

January 1949 (has links)
Y.W. Lee, T.P. Cheatham, Jr., J.B. Wiesner. / "October 13, 1949." / U.S. Army Signal Corps Contract No. W36-039-sc-32307 Project No. 102B Dept. of the Army Project No. 3-99-10-022
919

Why Stereo Vision is Not Always About 3D Reconstruction

Grimson, W. Eric L. 01 July 1993 (has links)
It is commonly assumed that the goal of stereovision is computing explicit 3D scene reconstructions. We show that very accurate camera calibration is needed to support this, and that such accurate calibration is difficult to achieve and maintain. We argue that for tasks like recognition, figure/ground separation is more important than 3D depth reconstruction, and demonstrate a stereo algorithm that supports figure/ground separation without 3D reconstruction.
920

Characterization of substrate noise coupling, its impacts and remedies in RF and mixed-signal ICs

Helmy, Ahmed. January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Full text release at OhioLINK's ETD Center delayed at author's request

Page generated in 0.0322 seconds