951 |
Characterization of Ambient Noise and Design of Current Sensors for High-Frequency NoiseChang, Ming-Hui 13 October 2005 (has links)
High population density and the presence of many more motorcycles than cars make the noise environment in Taiwan different from that in other countries. There is growing concern about the electromagnetic effects within this environment. The electromagnetic environment is unique and the information about radio noise is not sufficient at this time. The interference of wireless communication system may be caused by the noise environment. Thus, we need to consider the influence that the noise causes. With the measured radio noise, the minimum suggested receive power in an urban environment ranges from 354 MHz to 426 MHz. It is analyzed by the means of Cumulative Distribution Function (CDF), Amplitude Probability Distribution (APD), Noise Amplitude Distribution (NAD), Pulse Duration Distribution (PDD), Pulse Spacing Distribution (PSD) and Average Crossing Rate (ACR). We measured the properties of noise at an urban center, a nearby port, and a freeway exit, which are located in the same city, and on a hill lying adjacent to the city. We chose an urban center and a nearby hill as the noise environment for the following reasons: (a) The noise margin at urban areas is smaller than that at suburban and rural areas. (b) The coverage of the measurement on a hill is larger than that in a city. (c) The relation of the noise environment between a hill and an urban center can be obtained. The statistical distributions of the four particular noise environments are shown and design constraints for a broadcasting system are revealed.
Secondly, we also provide a technology for designing miniature Rogowski coils on glass substrates to obtain current sensors for high operating frequencies in this thesis. The coils are useful for measurement of a small current on a microstrip line at high frequencies. In our experiments, a 50 Ohm microstrip line is driven by an input voltage of 100 mV. A frequency as high as 6 GHz has been used. The highest frequency is limited by the oscilloscope available to us. Geometric effects of the device were investigated to obtain the sufficient output voltage at high frequencies. The induced output voltage can approach approximately 7 mV by modifying the structure of Rogowski coils. At the same time, On-chip solenoid inductors for high frequency magnetic integrated circuits are proposed. The eddy current loss was reduced by dividing the inductor into three consecutive inductors connected in series. The inductor has an inductance of 1.1 nH and the maximum quality factor (Qmax) of 50.5. The self-resonant frequency and the operating frequency at Qmax are greater than 17.5 GHz and 16.7 GHz, respectively.
|
952 |
Quantum limits of measurements induced by multiplicative conservation laws: Extension of the Wigner-Araki-Yanase theoremKimura, Gen, Meister, Bernhard K., Ozawa, Masanao 09 1900 (has links)
No description available.
|
953 |
EFFECT OF HAND-ARM VIBRATION ON INNER EAR AND CARDIAC FUNCTIONS IN MANPEKKARINEN, JUSSI, STARCK, JUKKA, INABA, RYOICHI, FÄRKKILÄ, MARKUS, PYYKKÖ, ILMARI 05 1900 (has links)
No description available.
|
954 |
Noise Reduction Using Aluminum Porous BoardChung, Yao-Jen 11 July 2000 (has links)
ABSTRACT
The thesis focuses on aluminum porous board used in noise reduction. The experiment evaluates propagation of sound wave and examines acoustic characteristics of aluminum porous board when sound wave impinging on the aluminum porous board. Also, the material properties and acoustic properties of aluminum porous board are analyzed to help further understanding of aluminum porous board.
Biot`s poroelastic theory is essentially used to obtain the equation of motion of the elastic porous material, following the calculation of sound transmission loss via application of appropriate boundary condition. Supported by the theoretical analysis and measured data, the result in the thesis shows that aluminum porous board can provide well noise reduction throughout all frequency ranges. In addition, aluminum porous board lined with multi-panel structure, through analysis on sound transmission loss, proved better effect than single-paneled aluminum porous board in noise reducing. The difference is about 5dB in low frequency and more than 10dB in high frequency.
The studying of material mechanical properties of aluminum porous board is also included in the thesis, According to the database obtained in this thesis, acoustic properties and material properties of aluminum porous board can be worked out to estimate suitable aluminum porous board applied in noise reduction. The analysis suggests if higher noise reduction is required, one needs to thicken the aluminum porous board, or to increase density and Young`s modulus of the material, which results improvement in high frequency; but no effect in low frequency. Moreover, increasing material thickness and density will shift the resonance frequency to lower value; in addition, increasing Young`s modulus will move the resonance frequency to higher value.
|
955 |
A Study of Gain-flattened L-Band EDFATseng, Wen-Hung 27 June 2000 (has links)
ABSTRACT
In this thesis, we investigate the amplification characteristics of gain-flattened L-band (1570-1600 nm) erbium-doped fiber amplifier (EDFA) by employing the 1480 nm bi-directional pumping configuration. L-Band EDFAs are attractive because the use of L-band and C-band (1530-1560 nm) EDFAs in parallel greatly expands the amplification wavelength region. We adjusted the length of erbium-doped fiber (EDF) to achieve the flat amplification characteristics in the 1573-1600 nm wavelength region without using gain equalizers. The L-band EDFA exhibited a signal gain of 23 dB with good uniformity (less than 1 dB) and a noise figure of 6.9 dB for a 1580 nm signal of 16-channel WDM system. We also used the simulation tools to investigate the characteristics of L-band EDFA with the same configuration. The simulation results quite agree with the experimental data.
|
956 |
Bounds on the map threshold of iterative decoding systems with erasure noiseWang, Chia-Wen 10 October 2008 (has links)
Iterative decoding and codes on graphs were first devised by Gallager in 1960, and then rediscovered by Berrou, Glavieux and Thitimajshima in 1993. This technique plays an important role in modern communications, especially in coding theory and practice. In particular, low-density parity-check (LDPC) codes, introduced by Gallager in the 1960s, are the class of codes at the heart of iterative coding. Since these codes are quite general and exhibit good performance under message-passing decoding, they play an important role in communications research today. A thorough analysis of iterative decoding systems and the relationship between maximum a posteriori (MAP) and belief propagation (BP) decoding was initiated by Measson, Montanari, and Urbanke. This analysis is based on density evolution (DE), and extrinsic information transfer (EXIT) functions, introduced by ten Brink. Following their work, this thesis considers the MAP decoding thresholds of three iterative decoding systems. First, irregular repeat-accumulate (IRA) and accumulaterepeataccumulate (ARA) code ensembles are analyzed on the binary erasure channel (BEC). Next, the joint iterative decoding of LDPC codes is studied on the dicode erasure channel (DEC). The DEC is a two-state intersymbol-interference (ISI) channel with erasure noise, and it is the simplest example of an ISI channel with erasure noise. Then, we introduce a slight generalization of the EXIT area theorem and apply the MAP threshold bound for the joint decoder. Both the MAP and BP erasure thresholds are computed and compared with each other. The result quantities the loss due to iterative decoding Some open questions include the tightness of these bounds and the extensions to non-erasure channels.
|
957 |
Analysis of the Characteristics of Vias in Multilayer Printed Circuit Boards Using the Transmission Line ModelTien, Tsung-Yin 04 August 2008 (has links)
In high-speed digital circuits, in order to utilize the space of printed circuit boards efficiently, the signal via is a heavily used interconnection structure to communicate different signal layers. However, the interconnection discontinuities will result in the degradation of the signal integrity and become a crucial issue for IC designers. To analyze the problems accurately and fast using the hybrid physical equivalent model which combining the transmission line model, slot model, via model, and decoupling capacitor model, etc. Based on the method, we can get a good result of simulation and compute faster than Ansoft HFSS. In addition, by the hybrid physical model method, we simulate and discuss several interesting issues such as resonance in power/ground planes, and the effect of the simultaneous switching noise, we also improve the bad effect of the printed circuit boards existing vias by some ways.
|
958 |
Effects of Waveguide Properties on Surface-Generated Ambient Noise: Simulation and AnalyzedLin, Yi-wei 29 August 2008 (has links)
Ambient noise generated by surface random processes is the primary contribution to the noise-field energy in the intermediate frequency band, and thus is important in many applications of underwater sound. In this study, the noise field is analyzed with respect to the effects of random source spectrum, waveguide structure of the water column, and seabed stratifica¬tion upon the noise-field intensity as well as spatial correlation. Based upon a noise-generation model due to continuous random sources, incorporating several analytical models for seabed stratification, a formulation may then be derived to facilitate the numerical implementation. Many results shall be generated and analyzed. In this study considers the noise field generated by wave in an oceanic environment with a sediment layer possessing a constant density and sound-speed profile. This model closely resembles the oceanic waveguide environment and therefore enables the simulation of surface noise generation. Many results of the noise field were generated, in¬cluding the noise intensity distribution, vertical and horizontal correlations. It is demonstrated that the noise intensity may be affected by the strat¬ification mainly through the continuous spectrum, in that the continuous spectrum is equally important as the normal modes in the present analysis. Moreover, the results for the correlations show that the noise field in the horizontal direction becomes more coherent when the noise sources are more correlated, while in the vertical direction, the results tend to reverse. The horizontal correlations of the noise field due to surface random sources with non-isotropic power spectrum, such as non-isotropic Gaussian and, were generated and analyzed.
|
959 |
Frequency Shaped LQR Design of an Active Noise Cancellation HeadphoneLin, Tsai-Fu 26 August 2009 (has links)
The purpose of this thesis is to design and implement an active noise cancellation headphone (ANC) with a feedback controller optimally designed using the linear quadratic regulator (LQR) design approach. The controller compares the audio input signal with the measured signal from a mini microphone in the headphone, and attempts to generate a control signal so that the headphone may reproduce a clean, low noise audio sound, without being interfered by the environmental noise.
The control bandwidth of the ANC headphone is 100~600Hz. The controller design emphasizes the choice of a weighting function in shaping the controller gain at different frequencies, so as to achieve maximum in-band noise cancellation and low noise amplification outside the bandwidth. The experimental result shows achievable noise cancellation of maximum 25dB within the control bandwidth and a barely noticeable slight noise amplification of maximum 6dB at high frequencies and 4.5dB at inaudible low frequencies.
|
960 |
Breakout Noise From The Coupled Acoustic-Structural HVAC SystemsVenkatesham, Balide 12 1900 (has links)
Noise control in the heating, ventilation and air-conditioning (HVAC) systems is one of the critical design parameters in measuring the occupant comfort. The noise generated by air-handling units propagates through the ducts in the axial as well as transverse direction. Noise radiated in the transverse direction from the duct walls excited by the internal sound field is called the breakout noise. An analytical formulation has been developed in this thesis in order to predict the breakout noise by incorporating three-dimensional effects along with the acoustical and structural wave coupling phenomena.
The first step in the breakout noise prediction is to calculate the interior acoustic response and flexural vibration displacement of the compliant walls. Dynamic interaction between the internal acoustic subsystem and flexible structural subsystem has been expressed in terms of the modal characteristics of the uncoupled response of the acoustic and structural sub-systems. Solutions of the inhomogeneous wave equation are rearranged in terms of impedance and mobility, and the equations describing the complete system are expressed in terms of matrices, which result in a compact matrix formulation. Examples of the formulation are a rectangular cavity with one flexible wall and a rectangular cavity with four-flexible walls. The formulation is modified to incorporate complex boundary conditions by means of appropriate Green’s functions. It is implemented for flexible wall duct using the modified cavity Green’s function. Another objective of the present investigation is to understand the coupling phenomenon and its effect on the compliant wall vibration displacement. The developed three-dimensional analytical analysis of the breakout noise is convenient to implement on the computer, and also to extend the sub-system level model to the system level model in order to analyze a complex acoustic-structural system for the breakout noise problem. The extent of coupling is calculated using a transfer factor based on the uncoupled natural frequencies of the acoustic and structural subsystems. It is observed from the free vibration analysis that a coupling between the cavity and the flexible panel exists in the vicinity of an uncoupled acoustic natural frequency. If a strong coupling occurs between an acoustic mode and a panel mode, then damping of structural subsystem would control it. The cavity volume changes stiffness of the panel, which in turn affects noise radiation in the stiffness-controlled region.
The second step is to calculate the sound power radiated from complaint wall. The wall vibration velocity is a linear combination of the uncoupled flexural modes of the structural subsystem. It is substituted into the Rayleigh integral and Kirchhoff– Helmholtz (KH) integral formulation to predict the sound pressure radiated by the vibrating duct wall. The radiated sound power can be obtained by integrating the acoustic intensity over the surface of the flexible duct wall making use of appropriate expressions for radiation impedance. The radiation impedance terms involve a quadruple integral. Evaluation of this integral is quite complex and poses formidable computational challenges. These have been overcome by means of a co-ordinate transformation. Sound power radiation from flexible walls of the plenum and duct walls has been calculated using an equivalent plate model. Analytical results are corroborated with numerical models.
The second part of thesis deals with a one-dimensional model to predict the breakout noise from a thin rectangular duct with different end conditions like anechoic termination, rigid-end termination, and the open-end termination. This model incorporates acoustic reflection effects in the duct internal sound field by using standing wave pattern by means of the transfer matrix approach. A one-dimensional prediction method based on the four-pole parameters has been developed to evaluate the lagged duct performance in terms of the breakout noise reduction. Radiation impedance of a duct is calculated by three different methods: (i) finite line source model (ii) finite cylinder model, and (iii) equivalent plate model based on fundamental bending mode of the duct. It is observed that the proposed model that uses the equivalent plate model for the lagged duct and the line source model for the bare duct is appropriate to predict the transverse insertion loss of the lagging, particularly at the lower frequencies that are of primary interest for reducing the breakout noise of rectangular ducts. The bare duct breakout noise results are compared with those of the corresponding 3-D analytical models. It shows that the one-dimensional model captures the overall mean pattern of breakout noise very well.
The third part of the thesis examines the internal acoustic field and thence the transmission loss (TL) of a rectangular expansion chamber, the inlet and outlet of which are situated at arbitrary locations of the chamber; i.e., the sidewall or the face of the chamber. The four-pole parameters have been expressed in terms of an appropriate Green’s function of a rectangular cavity with homogeneous boundary conditions. A transfer matrix formulation has been developed for the yielding-wall rectangular chambers by considering structural-acoustic coupling. It may be combined readily with the transfer matrices of the other constituent elements upstream and downstream in order to compute the overall transmission loss or insertion loss.
Wherever applicable, parametric studies have been conducted to evolve the design guidelines for minimizing the breakout noise from the HVAC ducts, plenums and cavities.
|
Page generated in 0.0421 seconds