• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1770
  • 718
  • 211
  • 158
  • 80
  • 50
  • 41
  • 35
  • 30
  • 19
  • 18
  • 13
  • 13
  • 10
  • 8
  • Tagged with
  • 3770
  • 1665
  • 737
  • 540
  • 404
  • 396
  • 391
  • 320
  • 318
  • 304
  • 275
  • 271
  • 265
  • 231
  • 196
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Study of interface plasmon in low-dimensional silicon nanostructures. / 低維硅納米結構表界面等離激元之研究 / CUHK electronic theses & dissertations collection / Study of interface plasmon in low-dimensional silicon nanostructures. / Di wei gui na mi jie gou biao jie mian deng li ji yuan zhi yan jiu

January 2010 (has links)
In this thesis study, the surface/interface plasmon excitations in different Si nanostructures were revealed through the EELS study in TEM/STEM. In the case of the planar boundary such as the wedge-like specimen, the spatially resolved EELS results disclose the dependence of the intensity and the position of the interface plasmon peak on the sample thickness. In the case of the Si-core/ SiO2-shell nanoparticles, we found that the SP/IP peak will firstly red-shifts with the increase of the SiO2 shell thickness and eventually levels off . As the aspect ratio of the Si nanoparticles increases, (from spherical particle to nanorod and nanowire), the SP/IP will split into two branches: transverse and longitudinal modes. We also found the intensity ratio of the transverse/longitudinal mode excitations depends on the diameter of the Si core size in the nanostructures. In the one-dimensional interacting Si nanoparticle chains, the Si nanoparticles were embedded in the SiO 2 shell, the splitting of the SP excitation into transverse and longitudinal modes was also observed. As the inter-particle distance reduces to several nanometers, the coupling of the IP excitation between the adjacent particles becomes significant, and results in the local field enhancement in-between the two particles. This is directly visualized using EFTEM imaging in TEM/STEM. / Surface/interface plasmons (SP/IP) are the plasmons confined at specific boundaries, describing the surface/interface charge density oscillation. They are generated when the scattered electromagnetic wave with its scattering vector component parallel to the boundary propagates along the surface/interface. Study of surface plasmon resonance in noble metals such as gold and silver nanoparticles have started decades ago, and recent interests are focused on the plasmonic properties of individual nanoparticles, as enabled by the size/shape control in the nanostructure growth and advances made in the characterization methodologies. Besides the noble metals, semiconductor such as silicon also attracts much attention for its plasmonic behavior. The surface/interface plasmon resonance frequency of Si-based nanostructures occurs at relatively higher energies (compared to Au and Ag), making it a perfect system to be studied using electron energy loss spectroscopy (EELS) based techniques. When performed in a scanning transmission electron microscope (STEM), such a technique enjoys excellent spatial resolution, and can map the local plasmonic properties of individual nanostructures. / The plasmon excitation depends sensitively on not only the material dielectric properties but also the geometrical configurations of the material. In the present thesis work, silicon-based nanostructures with planar, spherical, and cylindrical boundaries were investigated using both experimental and theoretical approaches, with focus on the plasmon oscillation originating from the Si/SiO 2 interface. The specimens employed include silicon/silica thin films, Si-core/SiO2-shell nanoparticles with different aspect ratios and spherical-shaped nanoparticle chains, as well as Si-core/SiO2-shell nanocables. / Wang, Xiaojing = 低維硅納米結構表界面等離激元之研究 / 王笑靜. / Adviser: Li Quan. / Source: Dissertation Abstracts International, Volume: 73-01, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 118-122). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Wang, Xiaojing = Di wei gui na mi jie gou biao jie mian deng li ji yuan zhi yan jiu / Wang Xiaojing.
172

Nonlinear behaviour in facetted glass shells

Pinto, Ricardo Jorge Neves dos Santos Teixeira January 2009 (has links)
Tese de mestrado integrado. Engenharia Civil (Ramo Estruturas). Faculdade de Engenharia. Universidade do Porto, Technical University of Denmark. 2009
173

Topological Symmetries of R^3

January 2018 (has links)
acase@tulane.edu / 1 / Fang Sun
174

Four-Dimensional Non-Reductive Homogeneous Manifolds with Neutral Metrics

Renner, Andrew 01 May 2004 (has links)
A method due to É. Cartan was used to algebraically classify the possible four-dimensional manifolds that allow a (2, 2)-signature metric with a transitive group action which acts by isometries. These manifolds are classified according to the Lie algebra of the group action. There are six possibilities: four non-parameterized Lie algebras, one discretely parameterized family, and one family parameterized by R.
175

An Automated System for Design and Analysis of Total Hip Implants: A Method of Modeling the Proximal Endosteal Canal Using 3-D CT Data

Manasas, Mark A. 01 April 1999 (has links)
The clinical success of Total Hip Arthroplasty is enhanced by matching hip implant geometry to femoral geometry. Traditionally, the shapes of hip implant designs have been based on data collected from patient populations using X-ray, CT Scan, digitized sliced bone, and other physical methods. The morphology of interest and the frame of reference often vary across researchers and the resulting numeric data are difficult to use in a Computer Aided Design package to build an implant model. This goal of this thesis was to develop procedures and automated programs for the design and evaluation of femoral hip implants using CT data. The procedures bridge the gap between patient specific "custom" prosthesis design and the so-called "averaged femur" implant designs. By automating the measurement, orientation and averaging of any user selected grouping of femora, these programs allow construction of an average femur template for small subsets of a population or populations. The programs allow grouping of femora using either dimensional attributes and/or patient attributes such as pathology, ethnic background, etc. The average femur template created for each group can then be used as the design boundary for a discrete implant size. Additional functionality is also provided for comparing average femur templates to their constitutive femora and for comparison of average femur templates against each other. To illustrate that the goals of this theses were realized, an example of the use of the system for a population of 192 Japanese is included in this thesis. The criteria for evaluation of the average femur templates was the gap or interference of the template to that of each constitutive femur along the medial and lateral endosteal contours. Testing 24 template sizes, the average of the worst fitting template to femur combination for each size resulted in a gap or interference of less than 2mm in the metaphysis and less than 4mm proximally.
176

Stochastic heat equations with memory in infinite dimensional spaces

Xie, Shuguang, School of Mathematics, UNSW January 2005 (has links)
This thesis is concerned with stochastic heat equation with memory and nonlinear energy supply. The main motivation to study such systems comes from Thermodynamics, see [85]. The main objective of this work is to study the existence and uniqueness of solutions to such equations and to investigate some fundamental properties of solutions like continuous dependence on initial conditions. In our approach we follow the seminal papers by Da Prato and Clement [10], where the stochastic heat equation with memory is tranformed into an integral equation in a function space and the so-called mild solutions are studied. In the aforementioned papers only linear equations with additive noise were investigated. The main contribution of this work is the extension of this approach to nonlinear equations. Our main tools are the theory of stochastic convolutions as developed in [33] and the theory of resolvent kernels for deterministic linear heat equations with memory, see[10]. Since the solution at time t depends on the whole history of the process up to time t, the resolvent kernel does not define a semigroup of operators in the state space of the process and therefore a ???standard??? theory of stochastic evolution equations as presented in the monograph [33] does not apply. A more delicate analysis of the resolvent kernles and the associated stochastic convolutions is needed. We will describe now content of this thesis in more detail. Introductory Chapters 1 and 2 collect some basic and essentially well known facts about the Wiener process, stochastic integrals, stochastic convolutions and integral kernels. However, some results in Chapter 2 dealing with stochastic convolution with respect to non-homogenous Wiener process are extensions of the existing theory. The main results of this thesis are presented in Chapters 3 and 4. In Chapter 3 we prove the existence and uniqueness of solutions to heat equations with additive noise and either Lipschitz or dissipative nonlinearities. In both cases we prove the continuous dependence of solutions on initial conditions. In Chapter 4 we prove the existence and uniqueness of solutions and continuous dependence on initial conditions for equations with multiplicative noise. The diffusion coefficients defined by unbounded operators are allowed.
177

An Investigation of the Dimensional Stability of Dental Alginates

Nichols, Paul Vincent January 2006 (has links)
Master of Science (Dentistry) / Dimensional stability was defined by Nicholls (1977) as “the ability (of a material) to maintain accuracy over time”, and the result of loss of accuracy, “distortion”, as “the relative movement of a single point, or group of points, away from some originally specified reference position such that permanent deformation is apparent”. Maintaining dimensional stability of dental impression materials is vital if the impression cannot be cast (in stone) soon after removal from the mouth. Dental irreversible hydrocolloid (alginate) is a major dental impression material used worldwide in many clinical procedures. However, alginate is dimensionally unstable and changes its dimensions (suffers “distortion”) after removal from the mouth. With storage times of more than ten minutes, alginate begins to distort, and after one to three hours (depending on the product and storage conditions) cannot be used for many clinical purposes, especially fixed prosthodontics such as crowns and bridges (Hampson 1955, Skinner & Hoblit 1956, Wilson & Smith 1963, Rudd et al. 1969, Miller 1975, Inohara 1977, Schoen et al. 1978, Coleman et al. 1979, Linke et al. 1985, Habu et al. 1986, Peutfeldt & Asmussen 1989, Mathilde & Peters 1992, Khan & Aziz Sahu 1995, Eriksson et al. 1998, Schleier et al. 2001, and Donovan & Chee 2004). This loss of accuracy, due to dimensional instability, manifests as a time-dependent distortion of the poured stone cast, and thus any prosthesis fabricated will not fit in the mouth. With the introduction of the more stable elastomers in the 1950s (Stackhouse 1970, Glenner 1997, Brown 2003) that could be stored for days if necessary, without loss of accuracy, the alginates fell out of favour for fixed prosthodontics. Recently, there has been a resurgence of interest in alginate for use in dental procedures where dimensional stability is critical (Peutzfeldt and Asmussen 1989, Eriksson et al. 1998). This in part is due to the favourable properties of alginate not found in the elastomers. Of greatest significance is that alginate hydrocolloid is hydrophilic, whereas elastomers are hydrophobic (Phillips & Ito 1958, Glenner 2004). Thus, alginate materials are able to reproduce wet oral areas with greater precision and to produce a superior "fit" of, say, a gold casting produced by the Lost Wax technique (Skinner and Phillips 1982). A number of reports have been published which investigate newer alginate materials that are claimed to be more dimensionally stable than older formulations. Puetzfeldt and Asmussen (1989) found that a newer alginate , if stored at 100% relative humidity, retained accuracy over 24 hours that was equivalent to that of the elastomers. More recently, the manufacturer of another alginate has claimed equivalent dimensional stability to the elastomers for up to 100 hours, and, whilst this claim has not been reported on in the literature, the present thesis will show that, under favourable conditions of storage, the material maintained clinically useful accuracy for up to 100 hours. Another approach to improving the accuracy of alginate impressions has been to combine reversible hydrocolloid with alginate (the “Bilaminar” technique). Frederick and Caputo (1997) confirmed that the new agar reversible hydrocolloids are just as accurate (at the time of removal from the mouth) as the new elastomers. Mathilde et al. (1992) and Eriksson et al. (1998) have shown that several of the “bilaminar” impression techniques for fixed prosthodontics, where alginate is used as a tray material supporting a reversible hydrocolloid (agar) wash, are as accurate and dimensionally stable as elastomers for up to three hours. However, these studies are difficult to interpret due to lack of uniformity in the testing methods, and the fact that there is no regulatory standard available to measure dimensional stability for dental alginates. The International Standard (IS) for alginate impression materials (ISO 1563:1990E) contains no specification for dimensional stability, and thus places no requirement for manufacturers to state dimensional stability properties on their labels. In contrast, ISO 4823:1992(E) specifies the IS for elastomeric dental impression materials, and it does specify a requirement for dimensional stability (less than 1.5% distortion after 24 hours). Further, the IS sets a method for determination of dimensional stability. Briefly, this method (the Optical Method) uses a travelling optical microscope to measure the accuracy of the distance between score lines on an impression of a test grid, at various time periods. The American Dental Association Specification No. 19 for dental elastomeric impression materials is identical to the IS. There is currently no specific Australian Standard (AS) for the dimensional stability of any dental impression material. Overview of Experimental Methods A. The Optical Method The aim of Part A of this investigation was to: 1. Adapt the Optical Method of the IS for elastomers to be reproducible for dental alginates. This was achieved by using a perforated test tray (to simulate clinical conditions), and measuring the grid pattern on a dental stone button after casting the test impression, rather than direct measurement of the impression, as for the IS. 2. To measure and rank the dimensional stability of a number of locally available dental alginates. Measurements of the test stone buttons proved reproducible, and the results were different for each sample, allowing them to be ranked according to dimensional stability after 50 and 100 hours of storage. The results show that the traditional optical method for measuring dimensional stability, as specified in the IS for dental elastomers, can be adapted to measure the dimensional stability of dental alginates However, the Optical Method of measuring dimensional stability of dental alginates is cumbersome and time-consuming. It was hypothesised that dimensional stability of dental alginates could be measured more conveniently by finding a thermal property that is directly proportional to dimensional stability. This method could be useful for the rapid determination of relative performance, and allow comparison with a determined benchmark. B. The Thermal Method Recently, modern methods of Thermal Analysis, Thermal Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) have been used to rapidly age various polymers, including food alginates (Chinachoti 1996), in order to measure thermal stability. This thesis shows that thermal stability is an indicator of dimensional stability. The aim of Part B of this investigation was therefore to adapt thermal analysis techniques to dental alginates, and develop a method to measure their thermal stability. These results were then compared with those for dimensional stability measured by the Optical Method to determine the relationship between thermal and dimensional stability for dental alginates. The results show that current thermal analysis methods of TGA and DSC can be adapted to measure relative dental alginate dimensional stability, and are both rapid and convenient. This study also provides evidence that commercial products differ as regards the property of dimensional stability, and can be ranked accordingly. C. Practical Application of the Methods The aim of part C of this thesis was to validate the methods (both optical and thermal) developed in this study by using them to investigate the effect of varying the water/powder ratio on the dimensional stability of dental alginates. It was shown that dimensional stability is affected by changes to the recommended water/powder ratio, that both the methods detected and measured the changes, and that the results were proportional, in that any percentage change detected by the optical method, was mirrored by the thermal method, confirming that the more convenient thermal methods can be used to measure dimensional stability.
178

3D metric reconstruction from uncalibrated circular motion image sequences

Zhong, Huang. January 2006 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2006. / Title proper from title frame. Also available in printed format.
179

3D reconstruction of road vehicles based on textural features from a single image

Lam, Wai-leung, William. January 2006 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2006. / Title proper from title frame. Also available in printed format.
180

The Hawaiian Earring

Black, Steven R. 26 November 1996 (has links)
Graduation date: 1997

Page generated in 0.488 seconds