• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1775
  • 718
  • 212
  • 158
  • 80
  • 50
  • 41
  • 35
  • 30
  • 19
  • 18
  • 13
  • 13
  • 10
  • 9
  • Tagged with
  • 3776
  • 1667
  • 737
  • 541
  • 404
  • 398
  • 391
  • 321
  • 319
  • 306
  • 275
  • 272
  • 265
  • 231
  • 197
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

A Multiprocessor three-dimensional graphics systems.

January 1991 (has links)
by Hui Chau Man. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1991. / Includes bibliographical references. / ABSTRACT --- p.i / ACKNOWLEDGEMENTS --- p.ii / TABLE OF CONTENTS --- p.iii / Chapter CHAPTER 1 --- INTRODUCTION / Chapter 1.1 --- Computer Graphics Today --- p.2 / Chapter 1.1.1 --- 3D Graphics Synthesis Techniques --- p.2 / Chapter 1.1.2 --- Hardware-assisted Computer Graphics --- p.4 / Chapter 1.2 --- About The Thesis --- p.5 / Chapter CHAPTER 2 --- GRAPHICS SYSTEM ARCHITECTURES / Chapter 2.1 --- Basic Structure of a Graphics Subsystem --- p.8 / Chapter 2.2 --- VLSI Graphics Chips --- p.9 / Chapter 2.2.1 --- The CRT Controllers --- p.10 / Chapter 2.2.2 --- The VLSI Graphics Processors --- p.11 / Chapter 2.2.3 --- Design Philosophies for VLSI Graphics Processors --- p.12 / Chapter 2.3 --- Graphics Boards --- p.14 / Chapter 2.3.1 --- The ARTIST 10 Graphics Controller --- p.14 / Chapter 2.3.2 --- The MATROX PG-1281 Graphics Controller --- p.16 / Chapter 2.4 --- High-end Graphics System Architectures --- p.17 / Chapter 2.4.1 --- Graphics Accelerator with Multiple Functional Units --- p.18 / Chapter 2.4.2 --- Parallel Processing Graphics Systems --- p.18 / Chapter 2.4.3 --- The Parallel Processor Architecture --- p.19 / Chapter 2.4.4 --- The Pipelined Architecture --- p.21 / Chapter 2.5 --- Comparisons and Discussions --- p.22 / Chapter 2.5.1 --- Parallel Processors versus Pipelined Processing --- p.23 / Chapter 2.5.2 --- Parallel Processors versus Multiple Functional Units --- p.23 / Chapter 2.6 --- Summary of High-end Graphics Systems --- p.24 / Chapter CHAPTER 3 --- AN ISA 3D GRAPHICS DISPLAY SERVER / Chapter 3.1 --- Common ISA Graphics Cards --- p.26 / Chapter 3.1.1 --- Standard Video Display Cards --- p.26 / Chapter 3.1.2 --- Graphics Processing Boards --- p.27 / Chapter 3.2 --- A Depth Processor for the ISA computers --- p.28 / Chapter 3.2.1 --- The Z-buffer Algorithm for HLHSR --- p.28 / Chapter 3.2.2 --- Our Hardware Solution for HLHSR --- p.29 / Chapter 3.2.3 --- Design of the Depth Processor --- p.31 / Chapter 3.2.4 --- Structure of the Depth Processor --- p.34 / Chapter 3.2.5 --- The Depth Processor Operations --- p.35 / Chapter 3.2.6 --- Software Support --- p.40 / Chapter 3.2.7 --- Performance of the Depth Processor --- p.44 / Chapter 3.3 --- A VGA Accelerator for the ISA Computers --- p.45 / Chapter 3.3.1 --- Display Buffer Structure of the SuperVGA --- p.46 / Chapter 3.3.2 --- Design of the VGA Accelerator --- p.47 / Chapter 3.3.3 --- Structure of the VGA Accelerator --- p.49 / Chapter 3.3.4 --- Combining the VGA Accelerator and the Depth Processor --- p.51 / Chapter 3.3.5 --- Actual Performance of the DP-VA Board --- p.54 / Chapter 3.3.6 --- 3D Graphics Applications Using the DP-VA Board --- p.55 / Chapter 3.4 --- A 3D Graphics Display Server --- p.57 / Chapter 3.5 --- Host Connection for the 3D Graphics Display Server --- p.59 / Chapter 3.5.1 --- The Single Board Computers --- p.60 / Chapter 3.5.2 --- The VME-to-ISA bus convenor --- p.61 / Chapter 3.5.3 --- Structure of the VME-to-ISA Bus Convertor --- p.61 / Chapter 3.5.4 --- Communications through the bus convertor --- p.64 / Chapter 3.6 --- Physical Construction of the DP-VA Board and the Bus Convertor --- p.65 / Chapter 3.7 --- Summary --- p.66 / Chapter CHAPTER 4 --- A MULTI-i860 3D GRAPHICS SYSTEM / Chapter 4.1 --- The i860 Processor --- p.69 / Chapter 4.2 --- Design of a Multiprocessor 3D Graphics System --- p.70 / Chapter 4.2.1 --- A Reconfigurable Processor-Pipeline System --- p.72 / Chapter 4.2.2 --- The Depth-Processing Unit --- p.73 / Chapter 4.2.3 --- A Multiprocessor Graphics System --- p.75 / Chapter 4.3 --- Structure of the Multi-i860 3D --- p.77 / Chapter 4.3.1 --- The 64-bit-wide Global Data Buses --- p.77 / Chapter 4.3.2 --- The 1280x1024 True-colour Display Unit --- p.79 / Chapter 4.3.3 --- The Depth Processing Unit --- p.82 / Chapter 4.3.4 --- The i860 Processing Units --- p.84 / Chapter 4.3.5 --- The System Control Unit --- p.87 / Chapter 4.3.6 --- Performance Prediction --- p.89 / Chapter 4.4 --- Summary --- p.90 / Chapter CHAPTER 5 --- CONCLUSIONS / Chapter 5.1 --- The 3D Graphics Synthesis Pipeline ……… --- p.91 / Chapter 5.2 --- 3D Graphics Hardware --- p.91 / Chapter 5.3 --- Design Approach for the ISA 3D Graphics Display Server --- p.92 / Chapter 5.4 --- Flexibility in the Multi-i860 3D Graphics System --- p.93 / Chapter 5.5 --- Future Work --- p.94 / Chapter APPENDIX A --- DISPLAYING REALISTIC 3D SCENES / Chapter A.1 --- Modelling 3D Objects in Boundary Representation --- p.96 / Chapter A.2 --- Transformations of 3D scenes --- p.98 / Chapter A.2.1 --- Composite Modelling Transformation --- p.98 / Chapter A.2.2 --- Viewing Transformations --- p.99 / Chapter A.2.3 --- Projection --- p.102 / Chapter A.2.4 --- Window to Viewport Mapping --- p.104 / Chapter A.3 --- Implementation of the Viewing Pipeline --- p.105 / Chapter A.3.1 --- Defining the View Volume --- p.105 / Chapter A.3.2 --- Normalization of The View Volume --- p.106 / Chapter A.3.3 --- The Overall Transformation Pipeline --- p.108 / Chapter A.4 --- Rendering Realistic 3D Scenes --- p.108 / Chapter A.4.1 --- Scan-conversion of Lines and Polygons --- p.108 / Chapter A.4.2 --- Hidden Surface Removal --- p.109 / Chapter A.4.3 --- Shading --- p.112 / Chapter A.4.4 --- The Complete 3D Graphics Pipeline --- p.114 / Chapter APPENDIX B --- DEPTH PROCESSOR DESIGN DETAILS / Chapter B.l --- PAL Definitions --- p.116 / Chapter B.2 --- Circuit Diagrams --- p.118 / Chapter B.3 --- Depth Processor User's Guide --- p.121 / Chapter APPENDIX C --- VGA ACCELERATOR DESIGN DETAILS / Chapter C.1 --- PAL Definitions --- p.124 / Chapter C.2 --- Circuit Diagram --- p.125 / Chapter C.3 --- The DP-VA User's Guide --- p.127 / Chapter APPENDIX D --- VME-TO-ISA BUS CONVERTOR DESIGN DETAILS / Chapter D.1 --- PAL Definitions --- p.131 / Chapter D.2 --- Circuit Diagrams --- p.133 / Chapter APPENDIX E --- 3D GRAPHICS LIBRARY ROUTINES FOR THE DP-VA BOARD / Chapter E.1 --- 3D Drawing Routines --- p.136 / Chapter E.2 --- 3D Transformation Routines --- p.137 / Chapter E.3 --- Shading Routines --- p.138 / Chapter APPENDIX F --- PIPELINE CONFIGURATIONS FOR N PROCESSORS / REFERENCES
162

Three dimensional stereo display systems.

January 1992 (has links)
by Li Lung Ming. / Thesis (M.Sc.)--Chinese University of Hong Kong, 1992. / Includes bibliographical references (leaves 33-34). / Chapter 0. --- Abstract --- p.3 / Chapter 1. --- Introduction --- p.4 / Chapter 1.1 --- Stereoscopic Applications --- p.4 / Chapter 1.2 --- How to perceive 3-D image --- p.6 / Chapter 1.2.1 --- Monocular Cues --- p.6 / Chapter 1.2.2 --- Binocular cues --- p.7 / Chapter 2 --- Background --- p.9 / Chapter 2.1 --- True 3 -D Display --- p.9 / Chapter 2.1.1 --- Stereoscopic Systems --- p.9 / Chapter 2.1.2 --- Head-Mounted Display --- p.11 / Chapter 2.1.3 --- Varifocal-mirror Display --- p.12 / Chapter 2.1.4 --- Holographic Systems --- p.13 / Chapter 2.2 --- Generation of real-time Stereoscopic Views --- p.15 / Chapter 3. --- A Stereoscopic System --- p.21 / Chapter 3.1 --- Design Considerations --- p.21 / Chapter 3.2 --- The Set-up --- p.22 / Chapter 4. --- Results --- p.26 / Chapter 5. --- Discussions --- p.27 / Chapter 5.1 --- Advantages of the set-up --- p.29 / Chapter 5.2 --- Disadvantages of the set-up --- p.30 / Chapter 6. --- Conclusion --- p.31 / Chapter 7. --- References --- p.33
163

Diseño e implementación de un sistema automático de medición de volumen de cajas de 5cm a 20cm de lado basado en sensores de proximidad

Llallico Tovar, Vladimir Edmundo, Jiménez Carpio, Juan Diego, Herrera Jiménez, José Alejandro 08 August 2015 (has links)
Actualmente, debido al crecimiento exorbitante de comercio de productos de consumo masivo, las industrias tienen la necesidad de contar con una mejor organización, gestión y control de los procesos en el ámbito logístico, para poder asegurar el uso de manera eficiente, eficaz y efectiva de los recursos materiales, financieros y humanos con los que cuenta. Un aspecto importante en el área logística de las empresas es el almacenamiento de las existencias, donde se requiere controlar y sistematizar de manera adecuada y segura la utilización de las instalaciones, pues representan buena parte de los gastos que tienen que realizar las empresas. Asimismo, el transporte de los productos es otro factor que interviene y determina el desarrollo y evolución de la logística, pues las industrias necesitan conocer e identificar los volúmenes exactos de productos que requerirá de sus proveedores o entregará a sus clientes para poder calcular los costos y usar de manera eficiente los recursos de este rubro. Por otra parte, las empresas requieren de un sistema de control de calidad de sus productos, para la detección y control de errores que se pueden presentar en ellos. El presente trabajo propone una solución alternativa a la deficiente supervisión de los procesos involucrados en las industrias de fabricación de productos de consumo masivo, para ello se diseñará e implementará un sistema de dimensionamiento automático de cajas, que sirven para el empaque de los productos, con el objetivo de identificar y calcular los volúmenes de espacio requeridos por la empresa, costos de los procesos de almacenamiento y transporte, e implementar un sistema de control de calidad de las existencias para poder asegurar la entrega de un producto bueno y terminado a los clientes. / Tesis
164

Yield and reliability enhancement for 3D-stacked ICs. / CUHK electronic theses & dissertations collection

January 2013 (has links)
Jiang, Li. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 149-155). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts also in Chinese.
165

Biomechanical investigations of bend running technique in athletic sprint events

Churchill, Sarah January 2012 (has links)
For sprint events longer than 100 m, more than half the race is run on the bend, yet bend sprinting has received little attention in biomechanics literature. The aim of this thesis was to understand the effect of the bend on maximal effort sprint performance and technique, using bend radii and surfaces typical of outdoor competition. Three empirical studies were undertaken with experienced bend sprinters. Initial 3D kinematics investigations revealed an approximately 5% velocity decrease on the bend compared to the straight. However, step characteristic changes contributing to this reduction were different for the left and right steps. For the left step there were significant decreases in step frequency (p < 0.05), due to increased ground contact time, which agreed with previously proposed theoretical models. For the right step, however, a significantly reduced flight time resulted in a significant reduction in step length (p < 0.05). Maintaining step length and an ‘active touchdown’ were closely related to an athlete’s ability to better maintain straight line velocity on the bend. Generally, velocity decreased as bend radius decreased, with mean differences of up to 2.3% between lanes 8 and 2. However, changes to athletes’ technique due to different lanes were not conclusive. Ground reaction forces revealed between-limb differences during bend sprinting. Furthermore, frontal plane forces were up to 2.6 times larger on the bend than on the straight. Overall, asymmetries were identified between left and right steps for several performance, technique and force variables, suggesting that bend sprinting induces different functional roles between left and right legs, with the left step contributing more to turning to remain on the bend trajectory. The differences in kinematic and kinetic characteristics between the bend and straight, and between-limb asymmetries mean that athletes should apply the principle of specificity to bend sprinting training and conditioning, without sacrificing straight line technique.
166

Harmonious Storm

DOU, JIAYUN January 2011 (has links)
The intention with this imaginary storm in the form of a decorative lamp ‘Harmonious Storm’ is meant to hang from the ceiling, sculptural and often glowing with artificial light. Meanwhile it enhances the attractive value in the specific public space. The relation between importance of aesthetics and interior public environment is discussed in this thesis, with a purpose of achieving emotional and social needs that are excitement and happiness. / Program: Konstnärligt masterprogram i mode- och textildesign
167

Growth rate of 3-manifold homologies under branched covers

Cornish, James Stevens January 2018 (has links)
Over the last twenty years, a main focus of low-dimensional topology has been on categorified knot invariants such as knot homologies. This dissertation studies the case of two such homologies under the iteration of branched covering maps. In the first part, we find a spectral sequence on the sutured annular Khovanov homology of periodic links of period $r=2^i$. In the second part, we study the asymptotic growth rate of Heegaard Floer homology of cyclic branched covers of a knot as the branching number increases.
168

Three-dimensional reconstruction outside of the laboratory

Bennett, Stuart Charles January 2014 (has links)
No description available.
169

Simultaneous modelling and clustering of visual field data

Jilani, Mohd Zairul Mazwan Bin January 2017 (has links)
In the health-informatics and bio-medical domains, clinicians produce an enormous amount of data which can be complex and high in dimensionality. This scenario includes visual field data, which are used for managing the second leading cause of blindness in the world: glaucoma. Visual field data are the most common type of data collected to diagnose glaucoma in patients, and usually the data consist of 54 or 76 variables (which are referred to as visual field locations). Due to the large number of variables, the six nerve fiber bundles (6NFB), which is a collection of visual field locations in groups, are the standard clusters used in visual field data to represent the physiological traits of the retina. However, with regard to classification accuracy of the data, this research proposes a technique to find other significant spatial clusters of visual field with higher classification accuracy than the 6NFB. This thesis presents a novel clustering technique, namely, Simultaneous Modelling and Clustering (SMC). SMC performs clustering on data based on classification accuracy using heuristic search techniques. The method searches a collection of significant clusters of visual field locations that indicate visual field loss progression. The aim of this research is two-fold. Firstly, SMC algorithms are developed and tested on data to investigate the effectiveness and efficiency of the method using optimisation and classification methods. Secondly, a significant clustering arrangement of visual field, which highly interrelated visual field locations to represent progression of visual field loss with high classification accuracy, is searched to complement the 6NFB in diagnosis of glaucoma. A new clustering arrangement of visual field locations can be used by medical practitioners together with the 6NFB to complement each other in diagnosis of glaucoma in patients. This research conducts extensive experiment work on both visual field and simulated data to evaluate the proposed method. The results obtained suggest the proposed method appears to be an effective and efficient method in clustering visual field data and 3 improving classification accuracy. The key contributions of this work are the novel model-based clustering of visual field data, effective and efficient algorithms for SMC, practical knowledge of visual field data in the diagnosis of glaucoma and the presentation a generic framework for modelling and clustering which is highly applicable to many other dataset/model combinations.
170

Intuitive freeform modeling using subdivision surfaces.

January 2005 (has links)
Lai Yuen-hoo. / Thesis submitted in: November 2004. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 100-102). / Abstracts in English and Chinese. / Abstract --- p.i / 摘要 --- p.ii / Acknowledgment --- p.iii / List of Figures --- p.iv / Table of Content --- p.vii / Chapter 1. --- Introduction --- p.1 / Chapter 1.1. --- Problem Definition --- p.1 / Chapter 1.2. --- Proposed Solution --- p.2 / Chapter 1.3. --- Thesis Contributions --- p.2 / Chapter 2. --- Modeling Approaches --- p.4 / Chapter 2.1. --- Polygon Modeling --- p.4 / Chapter 2.2. --- Patch Modeling --- p.6 / Chapter 2.3. --- Freehand Sketch-based Modeling --- p.7 / Chapter 2.4. --- Template Based Modeling --- p.8 / Chapter 2.5. --- Curve Interpolation Method --- p.9 / Chapter 3. --- Surface Operations --- p.11 / Chapter 3.1. --- Surface Blending --- p.11 / Chapter 3.2. --- Surface Trimming --- p.13 / Chapter 3.3. --- Boolean Operations --- p.14 / Chapter 4. --- Subdivision Surface --- p.16 / Chapter 4.1. --- Basic Principle --- p.16 / Chapter 4.2. --- Catmull-Clark Surface --- p.17 / Chapter 5. --- Modeling Algorithm Overview --- p.21 / Chapter 6. --- Subdivision Surface Generation --- p.23 / Chapter 6.1. --- Input Curves --- p.23 / Chapter 6.2. --- Surface Sweeping --- p.24 / Chapter 6.3. --- Subdivision Surface Fitting --- p.29 / Chapter 7. --- Surface Blending --- p.32 / Chapter 7.1. --- Introduction --- p.32 / Chapter 7.2. --- Problem Definition --- p.32 / Chapter 7.3. --- Algorithm Overview --- p.36 / Chapter 7.4. --- Blend Region Detection --- p.39 / Chapter 7.4.1. --- Collision Detection --- p.40 / Chapter 7.4.2. --- Result and Analysis --- p.42 / Chapter 7.5. --- "Mesh Refinement, Surface Fitting and Region Removal" --- p.46 / Chapter 7.5.1. --- Mesh Refinement --- p.46 / Chapter 7.5.1.1. --- Adaptive Subdivision --- p.46 / Chapter 7.5.1.2. --- Additional Subdivision Constraint --- p.47 / Chapter 7.5.2. --- Surface Fitting --- p.49 / Chapter 7.5.2.1. --- General Approach --- p.49 / Chapter 7.5.2.2. --- Surface Point Correspondence --- p.50 / Chapter 7.5.2.3. --- Numerical Fitting Method --- p.51 / Chapter 7.5.3. --- Unwanted Region Removal --- p.55 / Chapter 7.5.4. --- Result and Analysis --- p.56 / Chapter 7.6. --- Boundary Smoothing --- p.58 / Chapter 7.6.1. --- General Approach --- p.59 / Chapter 7.6.2. --- Constraint on Deformation Direction of Vertex --- p.61 / Chapter 7.6.3. --- Result and Analysis --- p.63 / Chapter 7.7. --- Blend Curves --- p.65 / Chapter 7.7.1. --- Problem Definition --- p.65 / Chapter 7.7.2. --- Proposed Solution Overview --- p.66 / Chapter 7.7.3. --- Maintenance of Regular Vertex Valence along Blend Curve --- p.67 / Chapter 7.7.3.1. --- Pairing Up Blend Boundary Vertices --- p.70 / Chapter 7.7.4. --- Minimization of Distortion Caused by Extraordinary Vertices --- p.72 / Chapter 7.7.5. --- Blend Vertex Position Optimization Function --- p.74 / Chapter 7.7.5.1. --- Face Normal Expression --- p.74 / Chapter 7.7.5.2. --- Face Normal Difference Energy Function --- p.77 / Chapter 7.7.5.3. --- Midpoint Distance Energy Function --- p.78 / Chapter 7.7.5.4. --- Weighted Least Square Energy Minimization --- p.78 / Chapter 8. --- Implementation --- p.81 / Chapter 8.1. --- Data Structure --- p.81 / Chapter 8.2. --- User Interface --- p.82 / Chapter 9. --- Results --- p.83 / Chapter 9.1. --- Surface Generation --- p.83 / Chapter 9.2. --- Surface Blending --- p.86 / Chapter 9.2.1. --- Ideal Case --- p.86 / Chapter 9.2.2. --- Angle of Insertion --- p.87 / Chapter 9.2.3. --- Surface Feature Near Intersection --- p.88 / Chapter 9.2.4. --- Comparison --- p.89 / Chapter 9.2.5. --- Other Examples --- p.92 / Chapter 9.3. --- Overall Performance --- p.94 / Chapter 9.4. --- Limitations --- p.97 / Chapter 9.4.1. --- Limitation on Generated Shape --- p.97 / Chapter 9.4.2. --- Limitation on Input Surfaces --- p.98 / Chapter 10. --- Conclusion and Future Work --- p.99 / References --- p.100

Page generated in 0.0698 seconds