Spelling suggestions: "subject:"none linear waveshave interactions"" "subject:"none linear wave.we interactions""
1 |
The Role of Wave Self-Similarity in Nearshore Wave SpectraSmith, Morgan M, Mr. 01 January 2018 (has links)
Nonlinear wave-wave interactions and wave breaking contribute to nearshore wave energy dissipation. These factors can be analyzed by the principles of wave self-similarity. The equilibrium range can be shown in wind-driven wave spectra that exist in the form ( ) and However, the appropriate methods used to determine this loss of energy are controversial. This study examines an approach that reinvestigates the self-similarity principles. Wave spectra with lower peak periods are dominated by nonlinear wave-wave interactions which produce a scaling in shallow water. This thesis investigates the relative role of spectral similarity in different conditions in the nearshore region of the U.S. Army Corps of Engineers Field Research Facility in Duck, North Carolina. The results show young sea waves (wave spectra in which the propagation speed of waves at the spectral peak is much smaller than the wind speed) are dominated by nonlinear wave-wave interactions in the nearshore while older waves (wave spectra in which the propagation speed of waves at the spectral peak is equal to or greater than the wind speed) are dominated by wave breaking in deep water. Furthermore, nearshore wave models need to incorporate the self-similarity concept in deep and shallow water to better understand and quantify important aspects of wave physics in shallow water.
|
Page generated in 0.1701 seconds