• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reduction of phonon resonant terahertz wave absorption in photoconductive switches using epitaxial layer transfer

Kasai, S, Katagiri, T, Takayanagi, J, Kawase, K, Ouchi, T 18 March 2009 (has links)
No description available.
2

Examining the Effects of Directional Wave Spectra on a Nearshore Wave Model

Dillon, Sally Catherine Davis 10 August 2018 (has links)
Wave models are an integral part of coastal engineering due to their ability to quantify information that is either unobtainable or unavailable. However, these models rely heavily on the input of a directional wave spectrum that describes the variation of energy with frequency and direction. This study investigated how five methods for computing the directional wave spectrum perform within the nearshore spectral wave model, STWAVE. The results of the five experimental runs showed that overall, the greatest differences between spectra were observed in the significant wave height parameter. The mean wave direction showed greater differences at the offshore model domain boundary and lesser differences as the wave enters the nearshore; and the peak period had fewer differences at the boundary, but at the nearshore the differences were dependent upon the presence of wind forcing. Winds had a significant impact on observed differences between the spectra in the domain by dominating the wave field variation.
3

The Role of Wave Self-Similarity in Nearshore Wave Spectra

Smith, Morgan M, Mr. 01 January 2018 (has links)
Nonlinear wave-wave interactions and wave breaking contribute to nearshore wave energy dissipation. These factors can be analyzed by the principles of wave self-similarity. The equilibrium range can be shown in wind-driven wave spectra that exist in the form ( ) and However, the appropriate methods used to determine this loss of energy are controversial. This study examines an approach that reinvestigates the self-similarity principles. Wave spectra with lower peak periods are dominated by nonlinear wave-wave interactions which produce a scaling in shallow water. This thesis investigates the relative role of spectral similarity in different conditions in the nearshore region of the U.S. Army Corps of Engineers Field Research Facility in Duck, North Carolina. The results show young sea waves (wave spectra in which the propagation speed of waves at the spectral peak is much smaller than the wind speed) are dominated by nonlinear wave-wave interactions in the nearshore while older waves (wave spectra in which the propagation speed of waves at the spectral peak is equal to or greater than the wind speed) are dominated by wave breaking in deep water. Furthermore, nearshore wave models need to incorporate the self-similarity concept in deep and shallow water to better understand and quantify important aspects of wave physics in shallow water.

Page generated in 0.0568 seconds