• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 263
  • 128
  • 63
  • 44
  • 10
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 676
  • 109
  • 94
  • 80
  • 57
  • 56
  • 56
  • 50
  • 49
  • 49
  • 47
  • 44
  • 43
  • 42
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

The complex dielectric properties of aqueous ammonia from 2 GHz - 8.5 GHz in support of the NASA Juno mission

Duong, Danny 18 November 2011 (has links)
A new model for the complex dielectric constant, ε, of aqueous ammonia (NH4OH) has been developed based on laboratory measurements in the frequency range between 2-8.5 GHz for ammonia concentrations of 0-8.5 %NH3/volume and temperatures between 277-297 K. The new model has been validated for temperatures up to 313 K, but may be consistently extrapolated up to 475 K and ammonia concentrations up to 20 %NH3/volume. The model fits 60.26 % of all laboratory measurements within 2σ uncertainty. The new model is identical to the Meissner and Wentz (2004) model of the complex dielectric constant of pure water, but it contains a correction for dissolved ammonia. A description of the experimental setups, uncertainties associated with the laboratory measurements, the model fitting process, the new model, and its application to approximating jovian cloud opacity for NASA's Juno mission to Jupiter are provided.
202

Heterogeneous catalysts in aqueous phase reforming environments: an investigation of material stability

Ravenelle, Ryan M. 14 November 2011 (has links)
There are many problems associated with the use of fossil fuels to produce fuels and chemicals, and lignocellulosic biomass stands as a promising alternative fuel/chemical feedstock. Large scale processing of biomass will likely take place in high temperature liquid water due to the low vapor pressure and polar nature of carbohydrates. However, little is known about the material stability of these catalysts in high temperature aqueous phase environments. This dissertation aims to investigate the structural integrity of some common catalytic materials under typical biomass reforming conditions. There are 3 main objectives of this study: 1) identify potentially stable candidates from commonly used materials, 2) understand the mechanism(s) by which these catalysts degrade, 3) design/modify catalysts in an effort to increase their hydrothermal stability. The two main materials investigated in this work are zeolites (faujasite, ZSM-5) and γ-Al2O3 as these are commonly used as catalysts and catalyst supports. A number of physicochemical techniques were used to characterize the materials as a function of treatment time at conditions relevant for biomass reforming. For zeolites, the major findings are that ZSM-5 framework is highly stable whereas faujasite stability depends on the Si/Al ratio, where silicon rich materials are less stable. For γ-Al2O3 based catalysts, it was found that the alumina support hydrates and undergoes a phase transformation to form crystalline boehmite (AlOOH) with a subsequent loss in surface area and Lewis acid sites. When metal particles are present on the support, the phase change kinetics are slowed. The role of metal precursor on the stability of γ-Al2O3 supported catalysts was also explored, and it was found that the precursor used in catalyst synthesis changes the boehmite formation kinetics and also affects alumina support dissolution. The final thrust aims to stabilize a Pt/γ-Al2O3 catalyst by depositing silicon on the catalyst surface. The silicon modification is effective in protecting the catalyst from boehmite formation upon exposure to hot liquid water while also stabilizing metal particles against sintering. Additionally, an increase in turnover number for hydrogen production via aqueous phase reforming of sorbitol was observed.
203

Aqueous Phase Oxidation Of Sulfur Dioxide In Stirred Slurry Reactors

Gopala Krishna, K V January 1994 (has links)
Air pollution by sulfur dioxide is of great concern due to its harmful effects on environment, human beings, fauna and flora. Fossil-fuel-fired power plants are one of the major sources of SO2 emissions. Typically the concentration of SO2 in the flue gases of these plants is in the range of 2000 to 20000 ppm. Flue gas desulfurisation is one of the widely practiced strategies to control SO2 emissions. Aqueous phase oxidation of sulfur dioxide catalysed by carbonaceous particles is an attractive alternative to the conventional processes for flue gas desulfurisation because, amongst other reasons, sulfuric acid, the product of aqueous phase oxidation, finds extensive application in industry. In the literature it has been reported that sulfuric acid affects the solubility of sulfur dioxide and that activated carbon catalyses aqueous phase oxidation. However there is hardly any report on the systematic evaluation of the mechanism of the heterogeneous aqueous phase oxidation of sulfur dioxide which takes into account among other factors, the effect of sulfuric acid on the solubility of SO2 (particularly, at low levels of SO2 and sulfuric acid concentrations). Therefore the objective of the present work is to evaluate systematically the aqueous phase oxidation of SO2 in ppm levels with activated carbon as catalyst in a three-phase agitated slurry reactor and to model rigorously the solubility of SO2 in ppm levels in dilute sulfuric acid solutions and to estimate the concerned parameters experimentally. Strong effect of dilute concentrations of sulfuric acid on the solubility of SO2 is analyzed in terms of the influence of the acid on the equilibrium concentrations of the ionic species (HSO3¯ and SO4¯2 formed from the hydrolysis of SO2 (aq) and the dissociation of H2SO4 respectively) in SO2 - dil. H2SO4 systems. The analysis leads to a general expression relating the partial pressure of SO2 in the gas phase to the concentration of total dissolved SO2 and the concentration of sulfuric acid in the solution. Simple equations are obtained from the general expression for the cases of zero and high concentrations of sulfuric acid in the system, which in turn lead to direct experimental determination of the parameters, Henry's law constant and the equilibrium constant of hydrolysis of SO2 (aq). The developed model predicts the present experimental data as well as the data reported in the literature very closely. The dissolution of SO2, the hydrolysis of SO2 (aq) and the dissociation of H2SO4 are found to be instantaneous. From the dependency of the parameters on temperature, the heat of dissolution of SO2 is determined to be -31.47 kJ mol"1 and the heat of hydrolysis to be 15.69 kJ mol"1. The overall heat of solubility of sulfur dioxide is therefore -15.78 kJ mol"1. Preliminary reaction experiments have clearly indicated that SO2 (aq) does not react and HSO3¯ is the only reactant for aqueous phase oxidation of sulfur dioxide catalysed by activated carbon. The non-reactant SO2 (aq) deactivates the oxidation reaction by competing with HSO3¯ for adsorption on the active sites of the catalyst particles. However the catalyst particles become saturated with SO2 (aq) beyond a certain value of its concentration (saturation limit), which depends on temperature. A mechanism is proposed based on these observations to develop a rate model. The rate model also takes into account the effect of the concentration of the product sulfuric acid on the solubility of sulfur dioxide. The model predicts first order in HSO3¯ , half order in dissolved oxygen and a linear deactivation effect of 5O2(ag). The oxidation reaction is evaluated experimentally at various levels of the operating variables such as temperature and the concentrations of sulfur dioxide and oxygen in the inlet gas. In all experiments a pseudo steady-state region is observed where the gas phase concentration of SO2 reaches a steady value but the concentrations of HSO3¯ and total S (VI) in the liquid phase continue to change. Pseudo steady-state considerations lead to the determination of the initial estimates of the parameters of the rate model namely, the rate constant and the deactivation constant. These parameters are estimated from the transient profiles of the product (sulfuric acid) by solving the model equations by Runge-Kutta method along with Marquardt's non-linear parameter estimation algorithm. The predictions of the model with the estimated parameters match very well with the experimentally observed concentration profiles of S(VI) and HSO3 in the liquid phase and SO2 in the gas phase. The deactivation constant in the saturation range is independent of temperature and is 0.27, which indicates that the intrinsic rate constant is about four times greater than the observed rate constant. From Arrhenius equation-type dependency of the parameters on temperature, the activation energy for the oxidation reaction is determined to be 93.55 kJ mol"1 and for deactivation to be 21.4 kJ mol"1. The low value of activation energy for deactivation suggests a weak dependency of the deactivation on temperature, which perhaps is due to the weak nature of the chemisorption of SO2 (aq) on carbon.
204

Solubilization and release studies of small molecules in polymeric micelles /

Teng, Yue, January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references (leaves 166-173). Available also in a digital version from Dissertation Abstracts.
205

Fabricating and Characterizing Physical Properties of Electrospun Polypeptide-based Nanofibers

Khadka, Dhan Bahadur 01 January 2013 (has links)
This dissertation has aimed to fabricate polypeptide based biomaterial and characterize physical properties. Electrospinning is used as a tool for the sample fabrication. Project focused on determining the feasibility of electrospinning of certain synthetic polypeptides and certain elastin-like peptides from aqueous feedstocks and to characterize physical properties of polymer aqueous solution, cast film and spun fibers and fiber mats. The research involves peptide design, polymer electrospinning, fibers crosslinking, determining the extent of crosslinking, fibers protease degradation study, fibers stability and self-organization analysis, structure and composition determination by various spectroscopy and microscopy techniques and characterization of mechanical properties of individual suspended fibers. Fiber mats of a synthetic cationic polypeptide poly(L-ornithine) (PLO) and an anionic co-polypeptide of L-glutamic acid and L-tyrosine (PLEY) of defined composition have been produced by electrospinning. Fibers were obtained from polymer aqueous solution at concentrations of 20-45% (w/v) in PLO and at concentrations of 20-60% (w/v) in PLEY. Applied voltage and spinneret-collector distance were also found to influence polymer spinnability and fibers morphology. Oriented fibers were obtained by parallel electrodes geometry. Fiber diameter and morphology was analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). PLO fibers exposed on glutaraldehyde (GTA) vapor rendered fiber mats water-insoluble. A common chemical reagent, carbodiimide was used to crosslink PLEY fibers. Fiber solubility in aqueous solution varied as a function of crosslinking time and crosslinker concentration. Crosslink density has been quantified by a visible-wavelength dye-based method. Degradation of crosslinked fibers by different proteases has been demonstrated. Investigation of crosslinked PLEY fibers has provided insight into the mechanisms of stability at different pH values. Variations in fiber morphology, elemental composition and stability have been studied by microscopy and energy-dispersive X-ray spectroscopy (EDX), following the treatment of samples at different pH values in the 2-12 range. Fiber stability has been interpreted with reference to the pH dependence of the UV absorbance and fluorescence of PLEY chains in solution. The data show that fiber stability is crucially dependent on the extent of side chain ionization, even after crosslinking. Self-organization kinetics of electrospun PLO and PLEY fibers during solvent annealing has been studied. After being crosslinked in situ, fibers were annealed in water at 22 °C. Analysis by Fourier transform infrared spectroscopy (FTIR) has revealed that annealing involved fiber restructuring with an overall time constant of 29 min for PLO and 63 min for PLEY, and that changes in the distribution of polymer conformations occurred during the first 13 min of annealing. There was a substantial decrease in the amount of Na+ bound to PLEY fibers during annealing. Kinetic modeling has indicated that two parallel pathways better account for the annealing trajectory than a single pathway with multiple transition states. Bacteria have been engineered to make novel 250-mer elastin-like polypeptides (ELPs). Each was predicted to have an absolute net charge of less than 0.05 electron charges per amino acid residue in aqueous solution at neutral pH. Polymer structure in solution has been assessed by Circular dichroism spectroscopy (CD) and dynamic light scattering (DLS). Suitability for materials manufacture has been tested by electrospinning. Here, we have also tested the hypothesis that blending polypeptides of radically different amino acid composition will enable the realization of novel and potentially advantageous material properties. Aqueous polymer feedstock solutions consisted of pure ELP or ELP blended with a synthetic polypeptide, PLEY, which is highly ionized at neutral pH and spinnable. Morphology analysis of blended fibers by SEM has revealed the formation of a surprising variety of structures that are not seen in fibers of ELP or PLEY alone, for example, hollow beads. Analysis of blended fibers by fluorescence microscopy showed that there was little or no phase separation, despite the large difference in electrical properties between ELP and the synthetic polymers. Structure and composition of PLO, PLEY, ELPs and blends and electrospun fibers made of these polymers have been determined and compared. CD and FTIR have been utilized to obtain structural information on these polymers in aqueous solution, cast films and fibers. Fiber composition has been analyzed by EDX. Protein adsorption has been analyzed by quantitative fluorescence microscopy. The polymers adopted random coil-like conformations in aqueous feedstocks at neutral pH and in dehydrated cast films and fibers on glass, and the fibers comprised numerous counterions, according to spectral analysis. Adsorption of model proteins and serum proteins onto hydrated and crosslinked fibers depended on the electrical charge of the proteins and the fibers. The surface charge density of the fibers will be comparable to, but less than, the charge density on the outer leaflet of the plasma membrane of usual eukaryotic cells. Mechanical properties of a series of as-spun and crosslinked PLO and PLEY nanofibers with various diameters have been analyzed by using the pure bending mode and AFM technique. Aligned nanofibers were deposited on top of a microsized groove etched on a glass substrate. AFM tip was used as a probe, which could apply a measurable deflection and force onto the suspended nanofiber at a force calibration mode, so that the Young's modulus of a single nanofiber can be calculated based on the basic beam bending theories. The Young's moduli of the studied peptide nanofibers increased significantly with decreased fiber diameters. This study has also demonstrated that crosslinked electrospun PLO and PLEY fibers have a higher Young's modulus compared with their as-spun counterparts. Taken together, the results will advance the rational design of polypeptides for peptide-based materials, especially materials prepared by electrospinning. It is believed that this research will increase basic knowledge of polymer electrospinning and advance the development of electrospun materials, especially in medicine and biotechnology. The study has yielded two advances on previous work in the area: avoidance of an animal source of peptides and avoidance of inorganic solvent. The present results thus advance the growing field of peptide-based materials. Non-woven electrospun fiber mats made of polypeptides are increasingly considered attractive for basic research and technology development in biotechnology, medicine and other areas.
206

Thermodynamics of CO₂ loaded aqueous amines

Xu, Qing, doctor of chemical engineering. 31 January 2012 (has links)
Thermodynamics is important for the design of amine scrubbing CO₂ capture processes. CO₂ solubility and amine volatility in aqueous amines were measured at high temperature and pressure. A rigorous thermodynamic model was developed for MEA-CO₂-H₂O in Aspen Plus®. CO₂ solubility at 80-190°C was obtained from total pressure measurements. Empirical models as a function of temperature and loading were developed for CO₂ solubility from 40 to 160°C in aqueous monoethanolamine (MEA), piperazine (PZ), 1-methylpiperazine (1MPZ), 2-methylpiperazine (2MPZ), PZ/2MPZ, diglycolamine® (DGA®), PZ/1MPZ/1,4-dimethylpiperazine (1,4-DMPZ), and PZ/methyldiethanolamine (MDEA). The high temperature CO₂ solubility data for MEA is comparable to literature and compatible with previous low temperature data. For MEA and PZ, amine concentration does not have obvious effects on the CO₂ solubility. The heat of CO₂ absorption derived from these models varies from 66 kJ/mol for 4 m (molal) PZ/4 m 2MPZ and to 72, 72, and 73 kJ/mol for MEA, 7 m MDEA/2 m PZ, and DGA. The heat of absorption estimated from the total pressure data does not vary significantly with temperature. At 0-0.5 loading ([alpha]), 313-413 K, 3.5-11 m MEA (mol fraction x is 0.059-0.165), the empirical model of MEA volatility is ln(PMEA/xMEA) = 30.0-8153/T-2594[alpha]²/T. In 7 m MEA with 0.2 and 0.5 loading, PMEA is 920 and 230 Pa at 120°C. At 0.3-0.5 loading, the enthalpy of MEA vaporization, -[Delta]Hvap,MEA, is about 70-73 kJ/mol MEA. At 0.25-0.4 loading, 313-423 K, 4.7-11.3 m PZ (x is 0.078-0.169), the empirical model of PZ volatility is ln(PPZ/xPZ) = -123+21.6lnT+20.2[alpha]-18174[alpha]²/T. In 8 m PZ with 0.3 and 0.4 loading, PPZ is 400 and 120 Pa at 120°C, and 2620 and 980 Pa at 150°C. At 0.25-0.4 loading, -[Delta]Hvap,PZ is about 85-100 kJ/mol PZ at 150°C and 66-80 kJ/mol PZ at 40°C. [Delta]Hvap,PZ has a larger dependence on CO₂ loading than [Delta]Hvap,MEA in rich solution because of the more complex speciation/reactions in PZ at rich loading. Specific heat capacity of 8 m PZ is 3.43-3.81 J/(g•K) at 70-150°C. Two new thermodynamic models of MEA-CO₂-H₂O were developed in Aspen Plus® starting with the Hilliard (2008) MEA model. One (Model B) includes a new species MEACOOH and it gets a better prediction than the other (Model A) for CO₂ solubility, MEA volatility, heat of absorption, and other thermodynamic results. The Model B prediction matches the experimental pKa of MEACOOH, and the measured concentration of MEACOO-/MEACOOH by NMR. In the prediction the concentration of MEACOOH is 0.1-3% in 7 m MEA at high temperature or high loading, where the heat of formation of MEACOOH has effects on PCO₂ and CO₂ heat of absorption. Model B solved the problems of Model A by adding MEACOOH and matched the experimental data of pKa and speciation, therefore MEACOOH may be considered an important species at high temperature or high loading. Although mostly developed from 7 m MEA data, Model B also gives a good profile for 11 m (40 wt%) MEA. / text
207

Pulmonary delivery of aqueous voriconazole solution

Tolman, Justin Andrew 13 August 2012 (has links)
Invasive Pulmonary Apsergillosis (IPA) is caused by inhalation of fungal conidia to the deep lung followed by germination and invasive hyphal growth in heavily immunosuppressed patients (e.g. those with hematologic malignancies, hematopoietic stem cell transplant recipients, and those undergoing solid organ transplantation). Hyphal growth into pulmonary capillaries often leads to dissemination of the infection and high mortality rates despite current treatment and prophylactic modalities. In addition, systemic antifungal therapy is often limited by drug toxicities, low and variable bioavailability, erratic pharmacokinetics, and drug interactions. Although targeted drug delivery to the lungs has been investigated to reduce adverse events and promote drug efficacy, inconsistent pharmacokinetic properties following inhalation of poorly water soluble antifungals has prompted variable drug efficacy. In this dissertation, inhaled voriconazole was investigated through in vitro and in vivo testing to evaluate pharmacokinetic properties, characterize drug safety and, determine drug efficacy as prophylaxis against IPA. In Chapter 2, the in vitro evaluation of solution properties and aerosol characterization of aqueous voriconazole was evaluated. Subsequent in vivo single and multiple dose pharmacokinetic studies demonstrated high drug concentrations were achieved in lung tissue and plasma following inhalation in contrast to previous reports of inhaled antifungals. Inhaled voriconazole was then administered twice daily (BID, at 08:00 and 16:00) in a murine model of IPA as described in Chapter 3 with significant improvements in animal survival over 12 days compared to both positive and negative control groups. As described in Chapter 4, voriconazole was then chronically administered BID at a high and low dose to rats over 21 days with a 7 day recovery period to assess dose tolerability through laboratory tests and histopathological changes to lung, liver, kidney, and spleen tissues. Inhaled voriconazole was well tolerated through all assessments but with signs of mild acute histiocytosis in lung tissue without other signs of inflammation. Chapter 5 expanded the single inhaled dose pharmacokinetic profile in lung tissue and plasma with determination of additional pharmacokinetic parameters through compartmental modeling. Peak and trough voriconazole concentrations were also evaluated in mice as well as rats following multiple doses administered over 12 hours (Q12H) as opposed to BID. / text
208

The use of new reactions for novel polymerizations, polymers and architectures

Coady, Daniel Joseph 23 May 2013 (has links)
The design, synthesis and characterization of novel conjugated polymers are described. Using a coupling reaction recently developed within our labs, polymers were constructed through triazene linkages generated by joining N-heterocyclic carbenes (NHCs) with organic azides. This triazene reaction produced polymer of sufficiently high molecular weight as to be spin-coated and rendered conductive upon doping with iodine. The reaction also has potential for executing post-polymerization modifications. This was evidenced through rapid functionalization of poly(4-methylazido-styrene) via triazene formation using a commercially available N-heterocyclic carbene (NHC). A formal anion metathesis of benzobis(imidazolium)s was used to transform neutral block copolymers into block ionomers. Further investigation of the block ionomers revealed their solvent mediated self assembly. The gradual change of organic to aqueous media caused the adoption of a three-dimensional micelle conformation as determined by transmission electron microscopy and dynamic light scattering. Through the exploitation of carbene-carbon disulfide adducts, new chain transfer agents were generated. After 2-dithiocarboxylate-imidazolium adduct formation, alkylation was performed with benzyl bromide. The resulting charged chain transfer agent was tested for its ability to moderate radical addition fragmentation (RAFT) polymerizations of styrene. A considerable increase in transfer kinetics as compared to that of commonly used RAFT agents was observed whilst retaining low polydispersity and molecular weight control. The rate enhancement is presumably due to the electron withdrawing imidazolium activating the thionyl towards the nucleophilic radical while retaining effective fragmentation. Ion coordinating macrocycles were affixed to a poly(methacrylate) scaffold for employment as electrolyte extractants. Polymer bound calix[4]pyrrole was found to complex fluoride and chloride with sufficient strength as to extract tetrabutylammonium salts from water. Enhanced extraction abilities were observed when calix[4]pyrrole was used in conjunction with benzo-15-crown-5. Methacrylate polymers containing both macrocycles affected the removal of aqueous potassium fluoride from a biphasic water/dichloromethane mixture. To provide evidence for the presence of potassium fluoride within the dichloromethane layer, ¹⁹F NMR and flame emission spectroscopy were used. / text
209

Surfactant/polymer flood design for a hard brine limestone reservoir

Pollock, Trevor Storm 21 November 2013 (has links)
A limited number of laboratory studies and pilot programs have been reported in chemical Enhanced Oil Recovery (EOR) flooding of carbonate reservoirs (Adams & Schievelbein, 1987). Fewer still have involved surfactants in limestone reservoirs. No surfactant/polymer flood on a field wide basis of a carbonate reservoir has ever been documented in the literature (Manrique, Muci, & Gurfinkel, 2010). This void represents a colossal opportunity given that nearly a third of the 32 billion barrels of oil consumed in the world each year come from carbonate reservoirs (Sheng, 2011, pp. 1, 254). This thesis is based on experiments with a high hardness (~5,000 ppm divalent ions) carbonate field. Phase behavior, aqueous stability, and core flood experiments were performed using polymer and various surfactants and co-solvents. Both commercially available and laboratory synthesized surfactants were tested. The objective was to optimize the chemical injection design in order to lower interfacial tension between water and oil in the reservoir. Research was also done with alkali intended for use with hard brines. The main challenges when working with hard brine were poor solubilization and low aqueous stability limits. However, highly propoxylated and ethoxylated surfactants mixed with internal olefin sulfonates, hydrophilic sulfates, and sec-butanol were observed to have very high solubilization ratios, fast phase behavior equilibration times, negligible viscous macroemulsion effects, and excellent aqueous stability. Spinning drop interfacial tensiometer tests confirmed low IFT values were obtained for a range of acceptable salinities with hard brine. Three core floods were performed using one of the surfactant formulations developed. One flood was done with field core, brine, and crude oil and failed to meet expectations because of high levels of heterogeneity (vugs) within the core that lead to an elongated oil bank and low and slow oil recovery. The other floods were done with Estillades Limestone. The first Estillades flood used hard synthetic field brine and had better mobility but poor oil recovery. The last core flood had good mobility and recovered 90% of the residual oil to water flooding, but only after a total of 1.1 pore volumes of 1.0 wt% surfactant solution were injected. The results provided in this thesis constitute proof of concept that S/P flooding can be done in high salinity and hardness reservoirs. / text
210

Advanced equation of state modeling for compositional simulation of gas floods

Mohebbinia, Saeedeh 10 February 2014 (has links)
Multiple hydrocarbon phases are observed during miscible gas floods. The possible phases that result from a gas flood include a vapor phase, an oleic phase, a solvent-rich phase, a solid phase, and an aqueous phase. The solid phase primarily consists of aggregated asphaltene particles. Asphaltenes can block pore throats or change the formation wettability, and thereby reduce the hydrocarbon mobility. The dissolution of injected gas into the aqueous phase can also affect the gas flooding recovery because it reduces the amount of gas available to contact oil. This is more important in CO₂ flooding as the solubility of CO₂ in brine is much higher than hydrocarbons. In this research, we developed efficient and fast multi-phase equilibrium calculation algorithms to model phase behavior of asphaltenes and the aqueous phase in the compositional simulation of gas floods. The PC-SAFT equation of state is implemented in the UTCOMP simulator to model asphaltene precipitation. The additional computational time of PC-SAFT is substantially decreased by improving the root finding algorithm and calculating the derivatives analytically. A deposition and wettability alteration model is then integrated with the thermodynamic model to simulate dynamics of precipitated asphaltenes. Asphaltene deposition is shown to occur with pressure depletion around the production well and/or with gas injection in the reservoir domain that is swept by injected gas. It is observed that the profile of the damaged area by asphaltene deposition depends on the reservoir fluid. A general strategy is proposed to model the phase behavior of CO₂/hydrocarbon/water systems where four equilibrium phases exist. The developed four-phase reduced flash algorithm is used to investigate the effect of introducing water on the phase behavior of CO₂/hydrocarbon mixtures. The results show changes in the phase splits and saturation pressures by adding water to these CO₂/hydrocarbon systems. We used a reduced flash approach to reduce the additional computational time of the four-phase flash calculations,. The results show a significant speed-up in flash calculations using the reduced method. The computational advantage of the reduced method increases rapidly with the number of phases and components. We also decreased the computational time of the equilibrium calculations in UTCOMP by changing the sequential steps in the flash calculation where it checks the previous time-step results as the initial guess for the current time-step. The improved algorithm can skip a large number of flash calculation and stability analyses without loss of accuracy. / text

Page generated in 0.0424 seconds