• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 760
  • 303
  • 111
  • 85
  • 29
  • 25
  • 25
  • 23
  • 21
  • 17
  • 13
  • 7
  • 5
  • 4
  • 3
  • Tagged with
  • 1722
  • 360
  • 254
  • 237
  • 213
  • 197
  • 194
  • 168
  • 152
  • 139
  • 112
  • 103
  • 95
  • 86
  • 83
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Assessing Au-Al Wire Bond Reliability Using Integrated Stress Sensors

McCracken, Michael 28 April 2010 (has links)
Wire bond reliability testing typically consists of aging bonds in a high temperature environment for long time periods, and removing samples at intervals to assess bond shear strength and characterize the bond cross sections. In this way, the degradation of the bond can be monitored at discrete time intervals, and it is determined whether the bond will be reliable during the specific service life. This process can be labour and time intensive. An alternative method is reported using an existing test chip that allows for contact resistance measurements and provides signals from piezoresistive integrated CMOS microsensors located around test bond pads. The sensors are sensitive to radial compressive or tensile stresses occurring on the bond pad due to intermetallic formation, oxidation, and crack formation at the bond interface. Two sets of identical test chips are bonded with optimized Au ball bonds and aged for 2000 h at 175 ºC. One set is connected to equipment which monitors signals from the stress sensors and the contact resistance of the bonds. The other set is destructively tested by shear tests and cross sectioning. It is found that the stress sensors are capable of indicating which stage of bond aging is experienced by relating the signal to the relative density of the intermetallic compounds (IMCs) and oxide which form during aging. This research offers a valuable new method for accelerating bond process development. By using the sensors to determine the stage of aging experienced and the magnitude of changes happening to the bond, the initial bond quality and bond reliability can be roughly characterized. A useful application is in comparing large samples of bonds made under varying conditions, and determining relative reliabilities of the bonds. A small sample size is required, as the sensors allow for complete continuous aging histories of individual bonds, which was not previously possible. A new test chip is designed for use in future studies which allows for contact resistance measurement, and provides stress signals for up to 55 bonds. A multiplexer integrated on the chip allows for measurements from one specified bond pad at a time. The chip is also equipped with x and yforce measurements which can be used to monitor bond process, and a resistive temperature detector for temperature measurement. A miniaturized bond aging system is designed to facilitate future works where chips are subject to high temperature storage. A heating element fits over the cavity of a microelectronic package containing the test chip, and allows for precise temperature control, while using less power than a conventional oven, and maintaining a low temperature at electrical connections to the package.
282

Assessing Au-Al Wire Bond Reliability Using Integrated Stress Sensors

McCracken, Michael 28 April 2010 (has links)
Wire bond reliability testing typically consists of aging bonds in a high temperature environment for long time periods, and removing samples at intervals to assess bond shear strength and characterize the bond cross sections. In this way, the degradation of the bond can be monitored at discrete time intervals, and it is determined whether the bond will be reliable during the specific service life. This process can be labour and time intensive. An alternative method is reported using an existing test chip that allows for contact resistance measurements and provides signals from piezoresistive integrated CMOS microsensors located around test bond pads. The sensors are sensitive to radial compressive or tensile stresses occurring on the bond pad due to intermetallic formation, oxidation, and crack formation at the bond interface. Two sets of identical test chips are bonded with optimized Au ball bonds and aged for 2000 h at 175 ºC. One set is connected to equipment which monitors signals from the stress sensors and the contact resistance of the bonds. The other set is destructively tested by shear tests and cross sectioning. It is found that the stress sensors are capable of indicating which stage of bond aging is experienced by relating the signal to the relative density of the intermetallic compounds (IMCs) and oxide which form during aging. This research offers a valuable new method for accelerating bond process development. By using the sensors to determine the stage of aging experienced and the magnitude of changes happening to the bond, the initial bond quality and bond reliability can be roughly characterized. A useful application is in comparing large samples of bonds made under varying conditions, and determining relative reliabilities of the bonds. A small sample size is required, as the sensors allow for complete continuous aging histories of individual bonds, which was not previously possible. A new test chip is designed for use in future studies which allows for contact resistance measurement, and provides stress signals for up to 55 bonds. A multiplexer integrated on the chip allows for measurements from one specified bond pad at a time. The chip is also equipped with x and yforce measurements which can be used to monitor bond process, and a resistive temperature detector for temperature measurement. A miniaturized bond aging system is designed to facilitate future works where chips are subject to high temperature storage. A heating element fits over the cavity of a microelectronic package containing the test chip, and allows for precise temperature control, while using less power than a conventional oven, and maintaining a low temperature at electrical connections to the package.
283

Structures, bonding and transport properties of high pressure solids

Yao, Yansun 25 September 2008 (has links)
The objective of this investigation is to study the distinct physical and electronic properties of high-pressure solids, through state-of-the-art first-principles numerical computations. This thesis is composed of four distinct research topics.<p>The superconducting properties of several high-pressure solids were investigated based on the Migdal-Eliashberg theory within the framework of the BCS model. The possibility of pressure-induced superconductivity was investigated for selected materials, including dense Li, Xe, and Group IV hydrides. The pressure-induced phase transition FCC ¡÷ cI16 in Li and the superconducting properties in the FCC and cI16 phases were investigated. Noble gas Xe is predicted being a superconductor under pressure with a comparatively low Tc. Two Group IV hydrides, SiH4 and SnH4, were predicted to be good superconductors under high pressure. <p> The Bader¡¦s AIM analysis, IR and Raman spectroscopes were used as diagnostic tools to differentiate among candidate structural models for solid H2, O2, and SiH4. For solid H2, IR and Raman spectra are used to examine two recently proposed competing structures of the high-pressure phase III; the Cmcm and C2/c structures. For solid O2, the experiment observed structure, IR and Raman spectra of the recently solved C2/m structure of the high-pressure Õ phase were well produced. Using Bader¡¦s AIM method and from the analysis of the electron charge density, the preference on the formation of (O2)4 clusters in the C2/m structure and the nature of the interactions between O2 molecules is explained. For SiH4, IR and Raman spectra were calculated for our predicted P42/nmc structure and the agreement with available experiment results is very good. <p>On theoretical aspect, typical approaches for predicting/determining unknown high-pressure crystal structures usually involve dynamical processes. An alternate approach based on a recently proposed genetic algorithm was explored in this thesis. The focus is to predict stable and meta-stable structures at high pressure without any preference on initial structures. The high-pressure structures of Ca were investigated and two new stable structures that might explain the diffraction pattern of the Ca-IV and Ca-V phases were predicted. The high-pressure phase II and phase III of AlH3 were also investigated, and structures were successfully predicted for each phase. Another example presented is the prediction of a metastable single-bonded phase of nitrogen.<p>A first-principles approach was developed for the calculation of XAS within the framework of the DFT. The PAW method was used to reconstruct the core orbitals. These orbitals are essential for the calculation of the transition matrix elements. This approach provides a straightforward framework for the investigation of single particle core hole and electron screening effects, which have been demonstrated to be significant for all investigated materials. To test the implementation, the C, Si, and O K-edge XAS were calculated for diamond, fullerene C60, £-quartz and water molecule. In all cases, the calculated XAS agree very well with experiments. For water molecule, the quality of the calculated XAS sensitively depends on the delicate theoretical treatment of core hole potential and electron screening. The overall agreement between the calculated XAS and experiment is reasonable.
284

Friends with nature : Nature and male bonding in Steinbeck's "Of Mice and Men" and Kerouac's "On the Road"

Johansson, Cecilia January 2010 (has links)
No description available.
285

Fiber-fiber bond strength : a study of a linear elastic model structure

Button, Alan F. 01 January 1979 (has links)
see pdf
286

Understanding visual preferences for landscapes: an examination of the relationship between aesthetics and emotional bonding

Cheng, Chia-Kuen 15 May 2009 (has links)
The relationship between humans and the quality of the environment have been examined primarily through two conceptual constructs: landscape aesthetics and place attachment or emotional place bonding. The former focuses on the physical environment and the latter focuses on the emotional or symbolic environment. This study focused on understanding the relationship between the two constructs, and provided a framework to integrate them toward a more comprehensive visual preference for landscapes. Nasar’s (1989) symbolic model was used as a guiding concept in the study. A web-based survey was used to collect people’s responses to landscapes portrayed in photographs. Four primary measures were used in the survey: landscape aesthetic, typicality (to a national park), emotional place bonding, and landscape visual preference. To further examine the effect of place meaning on responses to landscapes, respondents were told during the survey that landscape pictures were taken from different places, which were assigned randomly as place labels (national park, commercial recreation area, local park, and scenic area). Results indicated that emotional place bonding was significantly and positively influenced by perceived landscape aesthetics through four components: complexity, mystery, coherence, and legibility. Complexity and mystery had more influence on emotional place bonding than the other two components. Results also provided empirical support for Nasar’s (1989) symbolic model. The effect of landscape aesthetics on landscape visual preference was partially mediated by typicality and emotional place bonding. The typicality of a scene to a national park was found to positively influence people’s emotional bonding to the place. The four randomly assigned place labels did not elicit significantly different preferences or emotional responses to the places. This study documented how landscape aesthetics and emotional bonding can be integrated into visual preferences for landscapes. Results also provided evidence for the potential to use emotional bonding information to manage physical landscapes. The study contributes to our understanding and can assist with environment planning and management. Both physical appearance and symbolic/emotional meaning are very important to human perceptions of landscapes, and other attempts should be made to understand how the two constructs contribute to visual preference in future research.
287

Photoluminescence properties of polycyanate, polycyanate/9-anthrancencarbocylic acid and polycyanate/diethylaniline

Lin, Min-hong 08 July 2004 (has links)
none
288

The Low-Temperature Bonding Technique for Plastic-Based Microfluidic Chips and its Applications for Micromixers.

Lan, Che-wei 28 August 2004 (has links)
Abstract A new technique for bonding of polymer micro-fluidic devices has been developed. This method can easily bond biochips with complex flow patterns and metal layer. Above all, using a patterned glass, the micro-channel structures on Poly-Methyl Meth-Acrylate (PMMA) substrates were generated by one-step hot embossing procedure. In contrast with the traditional thermal bonding, this paper presents low-temperature and low-pressure packaging for polymer micro-fluidic platforms. Furthermore, the disposable plastic biochip has successfully been tested by the measurement of tensile strength and surface roughness. This paper also reports details of the passive and active micro-mixers. According to experimental and numerical investigations, the mixing performance of passive micro-mixers is expectably to be found. In addition, to quantify the mixing concentration distribution in the micro-channel, it has been demonstrated by launching the image analysis programs. The bonding efficiency of the solvent is twenty four times as strong as thermal bonding efficiency.
289

Wire Bond Microstructure Analysis and Void Formation Mechanism

Chan, Li-Chun 13 July 2006 (has links)
None
290

The Study of Cu-Wire Bonding and BGA Solder Ball Joining

Huang, Kuan-lin 27 July 2009 (has links)
none

Page generated in 0.039 seconds