• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 760
  • 303
  • 111
  • 85
  • 29
  • 25
  • 25
  • 23
  • 21
  • 17
  • 13
  • 7
  • 5
  • 4
  • 3
  • Tagged with
  • 1722
  • 360
  • 254
  • 237
  • 213
  • 197
  • 194
  • 168
  • 152
  • 139
  • 112
  • 103
  • 95
  • 86
  • 83
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
511

Micro-scale planar and two-dimensional modeling of two phase composites with imperfect bonding between matrix and inclusion

Struble, John D. 08 1900 (has links)
No description available.
512

Vibrational and Theoretical Investigations of Molecular Conformations and Intramolecular pi-Type Hydrogen Bonding

Ocola, Esther 2011 December 1900 (has links)
The molecular conformations, potential energy functions and vibrational spectra of several cyclic molecules have been investigated by ab initio and density functional theory calculations and by infrared and Raman spectroscopy. The ab initio computations of 3-cyclopenten-1-ol predict that its lowest energy conformer has a weak pi-type intramolecular hydrogen bonding. The three other conformers lie 301 to 411 cm^-1 higher in energy. The infrared and Raman spectra of this molecule confirm the presence of the four conformers. The energy difference between the two conformers of lowest energy was also determined from the experimental spectroscopic data and was found to be 435 plus/minus 160 cm^-1, in reasonable agreement with the ab initio computations results. Ab initio calculations for cyclopentane and d1, 1,1-d2, 1,1,2,2,3,3-d6, and d10 isotopomers confirm cyclopentane confirmed that has twist and bent structures and that these differ in energy by less than 10 cm^-1. The bending angle is 41.5 degrees and the twisting angle is 43.2 degrees. A complete vibrational assignment for each of the isotopomers was achieved. Ab initio calculations were also carried out for methylcyclopropane, cyclopropylsilane, cylopropylgermane, cyclopropylamine, cyclopropanethiol and cyclopropanol. The structure and the potential energy function for internal rotation was calculated for each and compared to available experimental results determined from infrared and Raman spectra. The calculated barriers to internal rotation agree very well with the experimental data. The structures, relative energies, and frequencies for the lowest energy vibrations of the twisted, bent, and planar forms of cyclohexene and four of its oxygen analogs were calculated and compared to experimental results. The calculated structural data agree very well with that from the microwave work, but the computed barriers are somewhat lower than those based on far-infrared data. 4-Silaspiro-(3,3)-heptane possesses two four-membered rings, each puckered with and angle of 34 degrees. The molecule possesses a two-dimensional ring-puckering potential energy surface with four equivalent minima. The ab initio calculations predict a barrier to planarity of each ring of 582 cm^-1 while the energy of the structure with both rings planar is 1220 cm^-1 higher. The calculated infrared and Raman spectra were compared to those previously published, and the agreement is excellent.
513

An Investigation of Bonding Mechanism in Metal Cladding by Warm Rolling

Yang, Wei 2011 December 1900 (has links)
Clad metals are extensively used for their multi-functionality and their optimal combination of quality and cost. Roll bonding is an effective and economic processing approach to making clad metals. This dissertation presents an experimental investigation of the roll cladding process as well as thermo-mechanical modeling of mechanism for roll bonding of clad metals. The objectives of this research are to investigate the bonding mechanism of dissimilar metals in a warm rolling process and to advance the knowledge of the roll cladding process. To accomplish the objectives, aluminum 1100 sheet (Al 1100) and stainless steel 304 sheet (SST 304) are bonded by warm rolling under controlled conditions. The 180 degrees peel test is used to determine the bonding property of those clad metals. The experimental results show that the rolling thickness reduction and the entry temperature are two major factors of bonding strength. Minimum thickness reduction at a particular entry temperature is required to bond Al 1100 and SST 304. Increasing of either thickness reduction or entry temperature significantly improves the bonding strength between the two metals. X-ray microanalysis is also performed to characterize the diffusion state at the bonding interface. The diffusion coefficients of aluminum and iron are estimated through experimental method. A thermo-mechanical model was developed to describe the rolling plastic deformation of component metal sheets and the diffusion evolution during a roll bonding process of dissimilar metals. The effect of various rolling conditions on the contact area ratio was quantitatively discussed. Finite element simulation of 2-D diffusion under the rolling created boundary conditions was performed. The peel strength during the diffusion evolution was predicted by the integrated roll bonding model. The modeling predictions correspond to the experimental results well. The correspondence validates the effectiveness of the thermo-mechanical roll bonding model. Based on experimental observation, this research presents a bonding mechanism for the roll cladding process of dissimilar metals. The roll bonding model can help optimize rolling parameters for varying bonding strength depending on the demands of the application. It can also provide insights into design and analysis of rolling bonding process of other groups of dissimilar metal sheets.
514

Numerical simulation of transient liquid phase bonding under temperature gradient

Ghobadi Bigvand, Arian 30 July 2013 (has links)
Transient Liquid Phase bonding under Temperature Gradient (TG-TLP bonding) is a relatively new process of TLP diffusion bonding family for joining difficult-to-weld aerospace materials. Earlier studies have suggested that in contrast to the conventional TLP bonding process, liquid state diffusion drives joint solidification in TG-TLP bonding process. In the present work, a mass conservative numerical model that considers asymmetry in joint solidification is developed using finite element method to properly study the TG-TLP bonding process. The numerical results, which are experimentally verified, show that unlike what has been previously reported, solid state diffusion plays a major role in controlling the solidification behavior during TG-TLP bonding process. The newly developed model provides a vital tool for further elucidation of the TG-TLP bonding process.
515

Experimental and theoretical investigations of transient liquid phase bonding of nickel based materials

Ghoneim, Adam 09 April 2010 (has links)
This thesis reports theoretical and experimental investigations carried out to better understand the effect of process parameters on the microstructure of transient liquid phase (TLP) joint. The theoretical investigations were carried out using analytical and numerical models to simulate base metal dissolution and isothermal solidification stages of the TLP bonding process. The experimental investigation was carried out by using standard metallographic technique to study the microstructure of bonded materials using optical and Scanning Electron Microscopes. Deviation from parabolic relationship between solid/liquid interface migration and holding time during TLP bonding is suggested as a new alternate phenomenon responsible for the anomalous increase in processing time required to produce eutectic microconstituent free joint with increase in bonding temperature. The results of TLP joining of commercial pure nickel using a Ni-P filler alloy showed that an increase in bonding temperature would be beneficial provided that sufficient holding time is allowed for complete isothermal solidification of liquated insert. Otherwise, an increase in bonding temperature may result in formation of thicker deleterious eutectic along the TLP joint. Furthermore, it was observed that the joint centerline eutectic product and interface second phase particles that form during TLP bonding of Inconel 738 using Ni-P filler can be significantly reduced by post bond heat treatment. The effectiveness of this approach, however, requires proper selection of heat treatment temperature above Ni-P binary eutectic temperature.
516

Vaginal birth after caesarean section (VBAC): exploring women's perceptions

Meddings, Fiona S., Phipps, F.M., Haith-Cooper, Melanie, Haigh, Jacquelyn January 2007 (has links)
This study was designed to complement local audit data by examining the lived experience of women who elected to attempt a vaginal birth following a previous caesarean delivery. The study sought to determine whether or not women were able to exercise informed choice and to explore how they made decisions about the method of delivery and how they interpreted their experiences following the birth. Background.¿ The rising operative birth rate in the UK concerns both obstetricians and midwives. Although the popular press has characterized birth by caesarean section as the socialites' choice, in reality, maternal choice is only one factor in determining the method of birth. However, in considering the next delivery following a caesarean section, maternal choice may be a significant indicator. While accepted current UK practice favours vaginal birth after caesarean (VBAC) in line with the research evidence indicating reduced maternal morbidity, lower costs and satisfactory neonatal outcomes, Lavender et al. point out that partnership in choice has emerged as a key factor in the decision-making process over the past few decades. Chaung and Jenders explored the issue of choice in an earlier study and concluded that the best method of subsequent delivery, following a caesarean birth, is dependent on a woman's preference. Design and methodology.¿ Using a phenomenological approach enabled a holistic exploration of women's lived experiences of vaginal birth after the caesarean section. Results.¿ This was a qualitative study and, as such, the findings are not transferable to women in general. However, the results confirmed the importance of informed choice and raised some interesting issues meriting the further exploration. Conclusions.¿ Informed choice is the key to effective women-centred care. Women must have access to non-biased evidence-based information in order to engage in a collaborative partnership of equals with midwives and obstetricians. Relevance to clinical practice.¿ This study is relevant to clinical practice as it highlights the importance of informed choice and reminds practitioners that, for women, psycho-social implications may supersede their physical concerns about birth.
517

Metallocene receptors for neutral molecules

Westwood, Joanna January 2001 (has links)
No description available.
518

Development of crystallographic surfaces for modelling interactions

Ford, Peter S. January 1997 (has links)
This thesis addresses two separate problems - an investigation of the interaction of probe molecules with crystalline rutile and an investigation of the environment of group IA and IIA elements in organometallic compounds. Ab-initio Hartree-Fock calculations have been performed, aimed at investigating the interactions between the ionic surface of a crystal and an adsorbate molecule. Titanium dioxide, a material important for catalysis, electronic components and pigments, was chosen as the substrate, with carbon monoxide as the probe molecule. The calculations were carried out using the Crystal92 program, for the (110) surface of the Rutile polymorph of TiO(_2), employing a slab with a thickness of 5 atomic layers. The calculations investigated two orientations of the CO molecule with the molecular axis perpendicular to the surface. Results are reported showing contour diagrams for slices through the energy hypersurface parallel and perpendicular to the surface of the substrate. In order to facilitate the work described above, a program 'Builder2' was developed. This provides a convenient means for generating models of slabs of material from crystal structure data. Part of the development of Builder2 was to devise computer code to decompose standard Space Group symbols into the underlying symmetry matrices. The code for Builder2 is proprietary to Oxford Materials Ltd. and forms part of a commercial product. The environment of group IA and IIA elements in crystalline materials has not been the subject of any reported investigation. These elements, and organic ligands associated with them, play a significant role in biological systems. Around 16,000 atomic environments were extracted from the Cambridge Crystallographic Database to provide an up-to-date analysis of actual environments. The results are presented as histograms and tables, and suggestions are made for future extension of the analyses.
519

Adhesive Bonding of Concrete-steel Composite Bridges by Polyurethane Elastomer

Cheung, Billy Siu Fung 30 July 2008 (has links)
This thesis is motivated by the use of full-depth, precast, prestressed concrete panels to facilitate deck replacement of composite bridges. The shear pockets required in using convention shear stud connections, however, can cause durability problems. The objective of this study is to investigate the possibility of eliminating the use of shear studs, and adhesively bond the concrete and steel sections. The feasibility of the developed polyurethane adhesive joint is defined based on the serviceability and ultimate limit states. The joint must have sufficient stiffness that additional deflection due to slip must not be excessive. The adhesive and bond must also have sufficient strength to allow the development of the full plastic capacity of the composite section. The use of the developed adhesive joint in typical composite bridges was found to be feasible. The behaviour under live load was found to be close to a fully composite section.
520

Investigating the Process of Cement Line Maturation on Substrate Surfaces with Submicron Undercuts

Ko, James Chih-Hsien Jr. 06 January 2011 (has links)
The cement line is the first mineralized matrix deposited on an implant surface during contact osteogenesis forming the bone/implant interface. The hypothesis underlying the present project was that non-collagenous cement line proteins must be deposited into the submicron undercuts on substrate surfaces prior mineralization. In vitro osteogenic cultures were used to grow bone nodules on Thermanox® coverslips modified with calcium phosphate nanocrystals, creating an undercutted surface. Electron microscopy was used to observe cement line formation. BSP immunogold labelling was used to determine if the cement line organic matrix is deposited within undercuts prior mineralization. The results showed the deposited bone nodules, and on test coverslips the deposited cement line was thicker and evenly distributed than control. Furthermore, positive BSP labelling was found within the undercuts prior to cement line mineralization. Thus, it can be concluded that cement line proteins are deposited into submicron undercuts on substrate surfaces prior to mineralization.

Page generated in 0.0502 seconds