• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 760
  • 303
  • 111
  • 85
  • 29
  • 25
  • 25
  • 23
  • 21
  • 17
  • 13
  • 7
  • 5
  • 4
  • 3
  • Tagged with
  • 1722
  • 360
  • 254
  • 237
  • 213
  • 197
  • 194
  • 168
  • 152
  • 139
  • 112
  • 103
  • 95
  • 86
  • 83
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
611

The Effect of Thermocycling on the Failure Load of a Standard Orthodontic Resin in Shear-Peel, Tension, and Torsion

Bunch, Jason Keith January 2006 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / New products are frequently developed for bonding brackets. This continuum brings about incessant studies attempting to prove or disprove their value. The need to compare the results of bond failure studies is made difficult if not impossible by the variation of published testing methods. The purpose of this study is to compare the differential effects of thermocycling, as a lab protocol, on three debonding techniques, shear-peel, tension, and torsion when using a traditional orthodontic resin adhesive. A standard orthodontic resin, Transbond™ XT (3M Unitek, Monrovia, CA) was used to bond 102 flattened 0.018-inch stainless steel brackets (3M Unitek) to flattened bovine incisors. Two step acid etching and priming (37 % phosphoric acid gel and Transbond MIP Primer, 3M Unitek) was used to prepare the enamel for bonding. During bonding, the resin thickness was held consistent. The bonding was accomplished under controlled temperature and humidity. Half of the samples were thermocycled prior to debonding. The samples were debonded in shear-peel, tension, and torsion. The data showed no significant differences between thermocycling and nonthermocycling in shear-peel or torsion, but in tension the thermocycling group had a statistically significant higher failure load. Overall, was a trend toward increased bond strength in the thermocycled group. The increase is likely the result of continued polymerization during thermocycling. The statistical difference that is noted in tension is thought to be due to the location of the highest stress being in the center of the resin pad. This would be the location of the least initial polymerization. The use of thermocycling as a lab protocol during bracket failure studies in shear-peel and torsion is not necessary when using traditional orthodontic resin.
612

Evaluation of the Tensile Bond Strength of Orthodontic Bracket Bases Using Glass Ionomer Cement as an Adhesive

Burns, Richard D., Jr. January 1992 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The search for an orthodontic bonding adhesive that has chemical adhesion to enamel and releases fluoride into the oral environment has led to experimentation with glass ionomer cements. This study compared the tensile bond strength of eight different orthodontic bracket base designs in vitro and assessed the amount of adhesive remaining on the bracket pad after debonding. Each bracket base design included in this study had unique characteristics warranting their inclusion. The groups contained brackets with 60, 80, and 100 gauge mesh pads; 100 gauge mesh sandblasted pads; perforated metal bases; Micro-Lock™ photo-etched bases; Dyna-Lock™ integral bracket/bases; and ceramic silane-coated bracket pads. Groups contained 20 to 22 specimens that were bonded to bovine incisor teeth embedded in a self-curing acrylic block that could be held in the testing machine. Pre-encapsulated glass ionomer cement (Ketac-Fil™) was the experimental adhesive. The adhesive was mixed according to the manufacturer's instructions in a dental amalgamator. The specimens were thermocycled between water oaths of 15°C and 55°C. The specimens spent 30 seconds in each bath for a total of 2,500 cycles and were stored in a humidor until debonding. After 14 days, the specimens were subjected to a tensile force using an Instron mechanical testing machine until failure occurred. The Micro-Loc™ photo-etched base had significantly higher mean tensile bond strength (p<0.05) than all other brackets tested. The ceramic brackets were unable to be tested due to the extremely weak bond strength which did not allow preparation of the samples for debonding. Following debonding, the percentage of adhesive remaining attached to the bracket base was determined using a grid in the ocular of a light microscope. In general, the site of bond failure involved the base/adhesive interface. The Dyna-Lock™ integral bracket/base and 80 gauge mesh base had a greater mean percent of adhesive remaining attached to the base. (Dyna-Lock™ 45 percent and 80 gauge mesh 43 percent vs. all other < 20 percent.) The results indicate that the bracket base design can influence the bond strength when GIC is used as an orthodontic adhesive and suggests that development of GIC with increased fracture toughness might increase bond strength.
613

Synergistic effect of sulfonation followed by precipitation of amorphous calcium phosphate on the bone-bonding strength of carbon fiber reinforced polyetheretherketone / アパタイト核処理による炭素繊維強化PEEKへの骨結合力の強化について

Takaoka, Yusuke 24 July 2023 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第24836号 / 医博第5004号 / 新制||医||1068(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 安達, 泰治, 教授 森本, 尚樹, 教授 上杉, 志成 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
614

Development of a Wire Bonding Process for Microsystems Fabricated From Polyvinyl Acetate - Nanocomposite

Barnes, Andrew Charles 12 April 2011 (has links)
No description available.
615

PEER INFLUENCE, FAMILY BONDING, AND ADOLESCENT DRUG USE: THE MODERATING ROLE OF GENDER

HUCKS, TONYA CAMILLE 03 December 2001 (has links)
No description available.
616

POLYMER FLIP-CHIP BONDING OF PRESSURE SENSORS ON FLEXIBLE KAPATON FILM FOR NEONATAL CATHETERS

LI, CHUNYAN 06 October 2004 (has links)
No description available.
617

MEMS PROTOTYPICAL SYSTEM INTEGRATION AND PACKAGING FOR A GENERIC MICROFLUIDIC SYSTEM

DHARMATILLEKE, SAMAN MANGALA 11 October 2001 (has links)
No description available.
618

DESIGN AND FABRICATION OF POLYMER-BASED MICROFLUIDIC PLATFORMS FOR BIOMEMS APPLICATIONS

Lai, Siyi 29 January 2003 (has links)
No description available.
619

Spot impact welding of aluminum sheet

Turner, Anthony James January 2002 (has links)
No description available.
620

On the Relationship Between Bonding Theory and Youth Gang Resistance in U.S. 8th Graders:Competing Structural Equation Models with Latent Structure Indirect Effects

Vander Horst, Anthony 20 June 2012 (has links)
No description available.

Page generated in 0.1 seconds