• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The influence of flow, geometry, wall thickness and material on acoustic wave resonance in water-filled piping

Mokhtari, Alireza January 1900 (has links)
The study of acoustic resonance in fluid-filled piping systems with and without mean flow is important for the nuclear industry. For this industry, it is vital to understand the acoustic resonance in their systems; however, no comprehensive experimental benchmark data or accurate modeling tool exists for predicting such a phenomenon. The main goals of the current research are to create a new experimental data bank for the conditions not tested earlier using the configurations of straight lines and branches, and to evaluate the applicability of the linear wave solution using different damping methods and a computational fluid dynamic (CFD) code to simulate the acoustic resonance in fluid-filled piping systems. In this experimental study, data on resonant frequencies and resonant amplitudes are collected and analyzed for a frequency range of 20–500 Hz for straight and branched tubes by varying their wall thicknesses, materials, and branch configurations at different flow rates and outlet boundary conditions. To be closer to the nuclear industry medium, water is employed in our experiments, contrasting to the fact that most of the available experiments reported were with air at a much lower sonic velocity. I consider here, in particular, measurements at the end of closed branches, upstream, downstream, and at different locations of the main line, as well as the interactions of different sonic velocities along the main pipes. A small diameter is chosen for the branched experiments since the decrease in the width of the main line and the branches has a pronounced effect on the resonant amplitudes due to an increased interaction among the unsteady shear layers forming across the side branches. The experimental results show that there is a strong effect of turbulent flow, wall material, and wall thickness on resonant amplitudes at frequencies above ∼250 Hz. Numerical investigations are performed solving the one-dimensional (1D) linear wave equation with constant and frequency-dependent damping terms and a CFD code. Employing frequency-dependent damping methodologies shows improvement in terms of resonant amplitude prediction over constant volumetric drag method. Comparing the 1D and CFD results shows that the CFD solution yields better predictions. / February 2017
2

Cylindrical linear water waves and their application to the wave-body problem

McNatt, James Cameron January 2016 (has links)
The interaction between water waves and a floating or fixed body is bi-directional: wave forces act on and cause motion in the body, and the body alters the wave field. The impact of the body on its wave field is important to understand because: 1) it may have positive or negative consequences on the natural or built environment; 2) multiple bodies in proximity interact via the waves that are scattered and radiated by them; and 3) in ocean wave energy conversion, by conservation of energy, as a device absorbs energy, so too must the energy be removed from the wave field. Herein, the cylindrical solutions to the linear wave boundary-value problem are used to analyze the floating body wave field. These solutions describe small-amplitude, harmonic, potential-flow waves in the form of a Fourier summation of incoming and outgoing, partial, cylindrical, wave components. For a given geometry and mode of motion, the scattered or radiated waves are characterized by a particular set of complex cylindrical coefficients. A novel method is developed for finding the cylindrical coefficients of a scattered or radiated wave field by making measurements, either computationally or experimentally, over a circular-cylindrical surface that circumscribes the body and taking a Fourier transform as a function of spatial direction. To isolate evanescent modes, measurements are made on the free-surface and as a function of depth. The technique is demonstrated computationally with the boundary-element method software, WAMIT. The resulting analytical wave fields are compared with those computed directly by WAMIT and the match is found to be within 0.1%. A similar measurement and comparisons are made with experimental results. Because of the difficulty in making depth-dependent measurements, only free-surface measurements were made with a circular wave gauge array, where the gauges were positioned far from the body in order to neglect evanescent modes. The experimental results are also very good. However, both high-order harmonics and wave reflections led to difficulties. To compute efficiently the wave interactions between multiple bodies, a well-known multiple-scattering theory is employed, in which waves that are scattered and radiated by one body are considered incident to another body, which in turn radiates and scatters waves, sending energy back to the first. Wave fields are given by their cylindrical representations and unknown scattered wave amplitudes are formulated into a linear system to solve the problem. Critical to the approach is the characterization of, for each unique geometry, the cylindrical forces, the radiated wave coefficients, and the scattered waves in the form of the diffraction transfer matrix. The method developed herein for determining cylindrical coefficients is extended to new methods for finding the quantities necessary to solve the interaction problem. The approach is demonstrated computationally with WAMIT for a simple cylinder and a more complex wave energy converter (WEC). Multiple-scattering computations are verified against direct computations from WAMIT and are performed for spectral seas and a very large array of 101 WECs. The multiple-scattering computation is 1,000- 10,000 times faster than a direct computation because each body is represented by 10s of wave coefficients, rather than 100s to 1,000s of panels. A new expression for wave energy absorption using cylindrical coefficients is derived, leading to a formulation of wave energy absorption efficiency, which is extended to a nondimensional parameter that relates to efficiency, capture width and gain. Cylindrical wave energy absorption analysis allows classical results of heaving and surging point absorbers to be easily reproduced and enables interesting computations of a WEC in three-dimensions. A Bristol Cylinder type WEC is examined and it is found that its performance can be improved by flaring its ends to reduce "end effects". Finally, a computation of 100% wave absorption is demonstrated using a generalized incident wave. Cylindrical representations of linear water waves are shown to be effective for the computations of wave-body wave fields, multi-body interactions, and wave power absorption, and novel methods are presented for determining cylindrical quantities. One of the approach's greatest attributes is that once the cylindrical coefficients are found, complex representations of waves in three dimensions are stored in vectors and matrices and are manipulated with linear algebra. Further research in cylindrical water waves will likely yield useful applications such as: efficient computations of bodies interacting with short-crested seas, and continued progress in the understanding of wave energy absorption efficiency.
3

Quantization Of Spin Direction For Solitary Waves in a Uniform Magnetic Field

Hoq, Qazi Enamul 05 1900 (has links)
It is known that there are nonlinear wave equations with localized solitary wave solutions. Some of these solitary waves are stable (with respect to a small perturbation of initial data)and have nonzero spin (nonzero intrinsic angular momentum in the centre of momentum frame). In this paper we consider vector-valued solitary wave solutions to a nonlinear Klein-Gordon equation and investigate the behavior of these spinning solitary waves under the influence of an externally imposed uniform magnetic field. We find that the only stationary spinning solitary wave solutions have spin parallel or antiparallel to the magnetic field direction.
4

Optimal system of subalgebras and invariant solutions for a nonlinear wave equation

Talib, Ahmed Abedelhussain January 2009 (has links)
This thesis is devoted to use Lie group analysis to obtain all invariant solutions by constructing optimal system of one-dimensional subalgebras of the Lie algebra L5 for a nonlinear wave equation. I will show how the given symmetries ( Eq.2) are admitted by using partial differential equation (Eq.1), In addition to obtain the commutator table by using the same given symmetries. Subsequently, I calculate the transformations of the generators with the Lie algebra L5, which provide the 5-parameter group of linear transformations for the operators. Finally, I construct the invariant solutions for each member of the optimal system.
5

Modélisation non-linéaire des interactions vague-structure appliquée à des flotteurs d'éoliennes off-shore / Nonlinear modelling of wave-structureinteractions applied to off shorewind turbine platforms

Dombre, Emmanuel 12 June 2015 (has links)
Cette thèse est consacrée à l'étude numérique des interactions non-linéaires entre des vagues et un corps rigide perçant la surface libre. La méthode développée repose sur un modèle d'éléments de frontière qui réduit la dimensionnalité du problème d'une dimension. Dans un premier temps, un modèle2D est appliqué à des géométries simples et permet de démontrer la pertinence de l'approche envisagée pour la prédiction des mouvements d'une structure flottante soumise à des vagues monochromatiques régulières. Dans un second temps, en nous inspirant d'un modèle potentiel non-linéaire 3D développé par Grilli textit{et al.}~cite{grilli2001fully}, nous proposons une généralisation de la méthode pour des maillages triangulaires non-structurés de surfaces 3D. Le modèle développé permet de traiter des configurations arbitraires de plusieurs cylindres verticaux en interaction avec les vagues. Nous présentons des cas de validation de nature académique qui permettent d'apprécier le comportement du modèle numérique. Puis nous nous tournons vers l'application visée par EDF R&D, qui concerne le dimensionnement d'éoliennes off-shore flottantes. Un flotteur de type semi-submersible est évalué à l'aide du modèle non-linéaire / This PhD work is devoted to the study of nonlinear interactions between waves and floating rigid structures. The developed model relies on a boundary element method which reduces the dimensionality of the problem by one. First, a 2D model is applied to basic geometries and allows us to demonstrate the validity of the method for predicting the motion of a floating structrure subject to incoming monochromatic regular waves. Secondly, getting inspired by the 3D fully nonlinear potential flow model of Grilli textit{et al.}~cite{grilli2001fully}, we propose a novel model which generalizes the method for unstructured triangular meshes of 3D surfaces. The proposed model is able to deal with arbitrary configurations of multiple vertical cylinders interacting with the waves. We present academic validation test cases which show how the model works and behaves. Finally, we study situations of interest for EDF R&D related to floating off-shore wind turbines. A semi-submersible platform is evaluated with the nonlinear model
6

Klein-Gordon models with non-effective time-dependent potential

Nascimento, Wanderley Nunes do 19 February 2016 (has links)
Submitted by Livia Mello (liviacmello@yahoo.com.br) on 2016-09-23T20:38:51Z No. of bitstreams: 1 TeseWNN.pdf: 1247691 bytes, checksum: 63f743255181169a9bb4ca1dfd2312c2 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-26T20:35:27Z (GMT) No. of bitstreams: 1 TeseWNN.pdf: 1247691 bytes, checksum: 63f743255181169a9bb4ca1dfd2312c2 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-26T20:35:33Z (GMT) No. of bitstreams: 1 TeseWNN.pdf: 1247691 bytes, checksum: 63f743255181169a9bb4ca1dfd2312c2 (MD5) / Made available in DSpace on 2016-09-26T20:35:40Z (GMT). No. of bitstreams: 1 TeseWNN.pdf: 1247691 bytes, checksum: 63f743255181169a9bb4ca1dfd2312c2 (MD5) Previous issue date: 2016-02-19 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / In this thesis we study the asymptotic properties for the solution of the Cauchy problem for the Klein-Gordon equation with non-effective time-dependent potential. The main goal was define a suitable energy related to the Cauchy problem and derive decay estimates for such energy. Strichartz’ estimates and results of scattering and modified scattering was established. The C m theory and the stabilization condition was applied to treat the case where the coefficient of the potential term has very fast oscillations. Moreover, we consider a semi-linear wave model scale-invariant time- dependent with mass and dissipation, in this step we used linear estimates related with the semi-linear model to prove global existence (in time) of energy solutions for small data and we show a blow-up result for a suitable choice of the coefficients. / Nesta tese estudamos as propriedades assintóticas para a solução do problema de Cauchy para a equação de Klein-Gordon com potencial não efetivo dependente do tempo. O principal objetivo foi definir uma energia adequada relacionada ao problema de Cauchy e derivar estimativas para tal energia. Estimativas de Strichartz e resultados de scatering e scatering modificados também foram estabelecidos. A teoria C m e a condição de estabilização foram aplicados para tratar o caso em que o coeficiente da massa oscila muito rápido. Além disso, consideramos um mod- elo de onda semi-linear scale-invariante com massa e dissipação dependentes do tempo, nesta etapa usamos as estimativas lineares de tal modelo para provar ex- istência global (no tempo) de solução de energia para dados iniciais suficientemente pequenos e demonstramos um resultado de blow-up para uma escolha adequada dos coeficientes.
7

Modélisation non-linéaire des interactions vague-structure appliquée à des flotteurs d'éoliennes off-shore / Nonlinear modelling of wave-structureinteractions applied to off shorewind turbine platforms

Dombre, Emmanuel 12 June 2015 (has links)
Cette thèse est consacrée à l'étude numérique des interactions non-linéaires entre des vagues et un corps rigide perçant la surface libre. La méthode développée repose sur un modèle d'éléments de frontière qui réduit la dimensionnalité du problème d'une dimension. Dans un premier temps, un modèle2D est appliqué à des géométries simples et permet de démontrer la pertinence de l'approche envisagée pour la prédiction des mouvements d'une structure flottante soumise à des vagues monochromatiques régulières. Dans un second temps, en nous inspirant d'un modèle potentiel non-linéaire 3D développé par Grilli textit{et al.}~cite{grilli2001fully}, nous proposons une généralisation de la méthode pour des maillages triangulaires non-structurés de surfaces 3D. Le modèle développé permet de traiter des configurations arbitraires de plusieurs cylindres verticaux en interaction avec les vagues. Nous présentons des cas de validation de nature académique qui permettent d'apprécier le comportement du modèle numérique. Puis nous nous tournons vers l'application visée par EDF R&D, qui concerne le dimensionnement d'éoliennes off-shore flottantes. Un flotteur de type semi-submersible est évalué à l'aide du modèle non-linéaire / This PhD work is devoted to the study of nonlinear interactions between waves and floating rigid structures. The developed model relies on a boundary element method which reduces the dimensionality of the problem by one. First, a 2D model is applied to basic geometries and allows us to demonstrate the validity of the method for predicting the motion of a floating structrure subject to incoming monochromatic regular waves. Secondly, getting inspired by the 3D fully nonlinear potential flow model of Grilli textit{et al.}~cite{grilli2001fully}, we propose a novel model which generalizes the method for unstructured triangular meshes of 3D surfaces. The proposed model is able to deal with arbitrary configurations of multiple vertical cylinders interacting with the waves. We present academic validation test cases which show how the model works and behaves. Finally, we study situations of interest for EDF R&D related to floating off-shore wind turbines. A semi-submersible platform is evaluated with the nonlinear model
8

On Traveling Wave Solutions of Linear and Nonlinear Wave Models (Seeking Solitary Waves)

Moussa, Mounira 02 June 2023 (has links)
No description available.
9

High-order in time discontinuous Galerkin finite element methods for linear wave equations

Al-Shanfari, Fatima January 2017 (has links)
In this thesis we analyse the high-order in time discontinuous Galerkin nite element method (DGFEM) for second-order in time linear abstract wave equations. Our abstract approximation analysis is a generalisation of the approach introduced by Claes Johnson (in Comput. Methods Appl. Mech. Engrg., 107:117-129, 1993), writing the second order problem as a system of fi rst order problems. We consider abstract spatial (time independent) operators, highorder in time basis functions when discretising in time; we also prove approximation results in case of linear constraints, e.g. non-homogeneous boundary data. We take the two steps approximation approach i.e. using high-order in time DGFEM; the discretisation approach in time introduced by D Schötzau (PhD thesis, Swiss Federal institute of technology, Zürich, 1999) to fi rst obtain the semidiscrete scheme and then conformal spatial discretisation to obtain the fully-discrete formulation. We have shown solvability, unconditional stability and conditional a priori error estimates within our abstract framework for the fully discretized problem. The skew-symmetric spatial forms arising in our abstract framework for the semi- and fully-discrete schemes do not full ll the underlying assumptions in D. Schötzau's work. But the semi-discrete and fully discrete forms satisfy an Inf-sup condition, essential for our proofs; in this sense our approach is also a generalisation of D. Schötzau's work. All estimates are given in a norm in space and time which is weaker than the Hilbert norm belonging to our abstract function spaces, a typical complication in evolution problems. To the best of the author's knowledge, with the approximation approach we used, these stability and a priori error estimates with their abstract structure have not been shown before for the abstract variational formulation used in this thesis. Finally we apply our abstract framework to the acoustic and an elasto-dynamic linear equations with non-homogeneous Dirichlet boundary data.
10

Investigating the effects of cooperative vehicles on highway traffic flow homogenization: analytical and simulation studies

Monteil, Julien 29 January 2014 (has links) (PDF)
The traffic engineering community currently faces the advent of a new generation of Intelligent Transportation Systems (ITS), known as cooperative systems. More specifically, the recent developments of connected and autonomous vehicles, i.e. cooperative vehicles, are expected to cause a societal shift, changing the way people commute on a daily basis and relate to transport in general. The research presented in this dissertation is motivated by the need for proper understanding of the possible inputs of cooperative vehicles in a traffic stream. Beyond legal aspects regarding the introduction of such vehicles and considerations on standardization and harmonization of the communication norms, the research focuses on the use of communication for highway traffic flow homogenization. In particular, the selected approach for the introduction of cooperation inherits from the theory of traffic flow and the recent developments of microscopic traffic models. Cooperation can first be introduced as a form of multi-anticipation, which can either come from drivers' behaviors or from communication. A mathematical framework for investigating the impact of perturbations into a steady-state traffic is proposed for the class of time continuous car-following models. Linear stability analyses are refined for forward and backward multi-anticipation, exploring the underlying importance of considering upstream information. The linear stability analyses for all wavelengths can be deepened by the mean of the graphical root locus analysis, which enables comparisons and design of strategies of cooperation. The positive influence of bilateral cooperation and of added linear control terms are highlighted. Weakly non-linear analyses are also performed, and the equations of solitary waves appearing at the frontier of the instability domain are obtained. A simple condition over the partial derivatives of the dynamical system is found to determine the acceleration regime of the leading edge of the travelling wave. Following these analytical results, one aim is to simulate a realistic traffic thereby reproducing the driving behavior variability. A Next Generation Simulation trajectory dataset is used to calibrate three continuous car-following models. A methodology involving data filtering, robust calibration, parameters estimation and sampling of realistic parameters is detailed, and allows realistic traffic with stop-and-go waves appearances to be replicated. Based on these simulated trajectories, previous analytical results are confirmed, and the growing perturbations are removed for various coverage rates of cooperative vehicles and adequately tuned cooperative strategies. Finally the issue of information reliability is assessed for a mixed fleet of cooperative and non-cooperative vehicles. The modeling choice consists in building a three layers multi-agent framework that enables the following properties to be defined: the physical behavior of vehicles, the communication possibilities, and the trust each vehicle -or agent- has in another vehicle information or in itself. The investigation of trust and communication rules allow the model to deal with high rates of disturbed cooperative vehicles sensors and to learn in real time the quality of the sent and received information. It is demonstrated that appropriate communication and trust rules sensibly increase the robustness of the network to perturbations coming from exchanges of unreliable information.

Page generated in 0.1272 seconds