Spelling suggestions: "subject:"nonresonant"" "subject:"nonressonant""
211 |
A Series-parallel Resonant Converter for Electrochemical Wastewater TreatmentKlement, Kathryn 03 January 2011 (has links)
Advantages of electrochemical wastewater treatment over conventional wastewater treatment include its smaller footprint, modularity, and ability to meet increasingly stringent government regulations. A power supply that can be packaged with an electrochemical stack could make electrochemical wastewater treatment more cost-effective and scalable. For this application, the series and series-parallel resonant converters are suitable power converter candidates. With an output current specification of 100A, the series-parallel resonant converter (SPRC) is superior due to its simpler output stage. The thesis presents the design of a 500W SPRC for a wastewater treatment cell stack. A rudimentary cell model is derived experimentally. The closed loop analysis, controller design and simulation results are presented. The output voltage and current are estimated using sensed quantities extracted from the high voltage, low current primary side. Low voltage experimental results verify the operation of the power stage and voltage estimation circuitry in open loop pulsed operation.
|
212 |
A Series-parallel Resonant Converter for Electrochemical Wastewater TreatmentKlement, Kathryn 03 January 2011 (has links)
Advantages of electrochemical wastewater treatment over conventional wastewater treatment include its smaller footprint, modularity, and ability to meet increasingly stringent government regulations. A power supply that can be packaged with an electrochemical stack could make electrochemical wastewater treatment more cost-effective and scalable. For this application, the series and series-parallel resonant converters are suitable power converter candidates. With an output current specification of 100A, the series-parallel resonant converter (SPRC) is superior due to its simpler output stage. The thesis presents the design of a 500W SPRC for a wastewater treatment cell stack. A rudimentary cell model is derived experimentally. The closed loop analysis, controller design and simulation results are presented. The output voltage and current are estimated using sensed quantities extracted from the high voltage, low current primary side. Low voltage experimental results verify the operation of the power stage and voltage estimation circuitry in open loop pulsed operation.
|
213 |
A Dimmable LED Driver For Visible Light Communication Based On the LLC Resonant ConverterZhao, Shuze 11 December 2013 (has links)
This work presents a new wireless Visible Light Communication lighting system targeted to future Smart Buildings. A digitally controlled LLC resonant dc-dc converter targeted to white LED luminaires is demonstrated. Visible Light Communication is implemented with minimal incremental cost, by operating the LLC converter in burst mode, without causing any visible disturbance. The converter operates with a regulated average LED current by adjusting the switching frequency, while the burst pulse timing is controlled to minimize the current disturbance and minimize the value of the output capacitor. Variable Pulse Position Modulation is used to modulate the data, while supporting a range of dimming settings. A digital demodulation scheme that supports variable frequency transmission is demonstrated. The 80 W, 400 V to 23 V converter experimental prototype has a peak efficiency of 93.8 %. The bit error rate of the complete system is fully characterized versus distance and angle.
|
214 |
A Dimmable LED Driver For Visible Light Communication Based On the LLC Resonant ConverterZhao, Shuze 11 December 2013 (has links)
This work presents a new wireless Visible Light Communication lighting system targeted to future Smart Buildings. A digitally controlled LLC resonant dc-dc converter targeted to white LED luminaires is demonstrated. Visible Light Communication is implemented with minimal incremental cost, by operating the LLC converter in burst mode, without causing any visible disturbance. The converter operates with a regulated average LED current by adjusting the switching frequency, while the burst pulse timing is controlled to minimize the current disturbance and minimize the value of the output capacitor. Variable Pulse Position Modulation is used to modulate the data, while supporting a range of dimming settings. A digital demodulation scheme that supports variable frequency transmission is demonstrated. The 80 W, 400 V to 23 V converter experimental prototype has a peak efficiency of 93.8 %. The bit error rate of the complete system is fully characterized versus distance and angle.
|
215 |
ACTIVE DAMPING OF LCL FILTER RESONANCE FOR A SINGLE PHASE GRID-CONNECTED DISTRIBUTED POWER GENERATION SYSTEMZou, BENYU 26 June 2014 (has links)
This Master of Applied Science thesis presents an inverter control system design and implementation with active damping of LCL filter resonance for a single phase grid-connected Distributed Power Generation (DPGS). The focus of the thesis is to actively damp the LCL filter resonance while keeping inverter control variables well regulated. The mathematical model of the LCL filter is analyzed and the filter is designed. Then, a PLL, and a PI compensator in the synchronous reference frame, and a PR compensator in stationary reference frame along a notch filter in cascade are designed and implemented. System level simulation and implementation are conducted. The idea of systematic applying the low loss power conversion topology, effective grid condition detection, grid synchronization, and advanced signal processing theory provides some advantages for single phase grid-connected inverter control design to meet the standard specifications of the interaction between the DPGS and utility grid. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2014-06-26 17:06:03.693
|
216 |
Effects of Resonant Magnetic Perturbations on the STOR-M Tokamak Discharges2014 April 1900 (has links)
Studies of resonant magnetic perturbations (RMP) have been an active topic in the tokamak research. The RMP technique involves the use of magnetic perturbations generated by external coils installed on a tokamak device. The resonant interaction between the plasma and RMP has favorable effects on magnetohydrodynamic (MHD) stability and other plasma parameters in tokamaks. The RMP experiments are carried out in the Saskatchewan Torus-Modified (STOR-M) tokamak using (l = 2, n = 1) helical coils carrying a static current pulse. The effect of RMP on the (m = 2, n = 1) magnetic islands is examined during ohmic discharges with high MHD activities. The amplitude and frequency of (2, 1) Mirnov fluctuations are significantly reduced after application of RMP. A phase of improved plasma confinement, characterized by a reduction in the H_alpha emission level and an increase in the soft x-ray (SXR) emission, is induced after application of RMP. It is also observed using the ion Doppler spectroscopy (IDS) that RMP can strongly affect the plasma
rotation in STOR-M. It is found that during the RMP pulse, the toroidal velocity of C_III impurities (located at the plasma edge) increases in the co-current direction. However, the toroidal velocities of O_V and C_VI impurities (located near the plasma core) change direction from counter-current to co-current. The reduction of the toroidal flow velocity is accompanied by a reduction of the MHD frequency. It is also found that radial profiles of ion saturation current and floating potential in the edge region can be modified by RMP. An increase in the pedestal plasma density and a more negative electric field are observed at the plasma edge region during the RMP pulse. An internal probe array is assembled and installed in STOR-M to study the RMP penetration and the plasma response to RMP.
|
217 |
High-frequency isolated DC/AC and bidirectional DC/DC converters for PMSG-based wind turbine generation systemLi, Xiaodong 29 October 2009 (has links)
In this dissertation, a high-frequency (HF) transformer isolated grid-connected power converter system with battery backup function is proposed for a small-scale
wind generation system (less than 100 kW) using permanent magnet synchronous
generator (PMSG). The system includes a main HF isolated DC/AC grid-connected converter and a bidirectional HF isolated DC/DC converter.
Through literature survey and some comparative studies, a HF isolated DC/DC
converter followed by a line connected inverter (LCI) is chosen as the grid-connected scheme. After reviewing several topologies which were used in such a DC/AC converter with an unfolding stage, a DC/AC grid-connected converter based on dual-
bridge LCL-type resonant topology is proposed. Through the control of the phase-
shift angle between the two bridges, a rectified sinusoidal dc link current can be
modulated, which in turn can be unfolded by the LCI. This converter is analyzed
with Fourier series analysis approach. It is shown that all switches in both bridges
can work in zero-voltage switching (ZVS) at any phase-shift and load conditions. The
redundancy of the dual-bridge structure make it easy to accommodate higher power flow. A design example of a 500 W converter is given and simulated. A prototype is built and tested in the lab to validate its performance. The simulation and experimental results show a reasonable match to the theoretical analysis. The expansion
to three-phase grid-connection is discussed with phase-shifted parallel operation of
three identical units. Input and output current harmonics of different arrangements
are analyzed to search for the best choice.
As the feature of a hybrid wind generation application, the battery backup function is fulfilled with a bidirectional HF transformer isolated DC/DC converter. This
dual-bridge series resonant converter (DBSRC) is analyzed with two ac equivalent
circuit approaches for resistive load and battery load respectively, which give same
results. Soft-switching is achieved for all switches on both sides of the HF transformer.
Test plots obtained from simulation and experiment are included for validation.
|
218 |
Design and performance of resonant cavities for communication systems : the theory and performance of resonant cavities for application in mobile radio and base-stations in the VHF and UHF bands are investigatedAdeniran, S. Adekunle January 1984 (has links)
It is often necessary to operate a number of radio communication channels from a single control room without time-sharing between the various channels. Here it is necessary to operate a number of transmitters and receivers simultaneously from the same base station or mobile unit without interference. The best method to achieve this has been found in the use of filters inserted in the transmission line between the antenna and the transmitter(s) on one hand and the receiver(s) on the other hand. The basic unit employed in the design of microwave filters is usually a cavity resonator of which the most important factors are the Q, insertion loss and resonant frequency. However, a problem which frequently arises with cavity resonators is the accurate determination of these resonant characteristics complicated by the presence of coupling port, materials and various design and geometrical deviations. Such cavities have been investigated in several cases and the results have been generalised, but this investigation has been conducted to examine thoroughly most of the problems being met in present practice. Design and development of some common resonant structures are considered. Emphasis is placed on solutions found to special problems especially regarding complicated boundary conditions. Furthermore, investigation includes methods for optimising resonant parameters such as insertion loss and Q, trading of insertion loss with coupled cavity selectivity, frequency tuning and compensation for frequency variations due to wide ranges of operating temperatures. By comparing Q values obtained in practice with theoretical values, it has been possible to establish an appropriate Q loss budget to as to facilitate accurate prediction of coupled cavity unloaded Q. A satisfactory agreement between theory and practice has been obtained. By application of the results of theoretical analysis and experiment, it is shown that microwave filters can be designed to have a desired insertion loss and off-band attenuation slope. Steps leading to designs of any number of cascaded cavities in a two-port network and, subsequently, multi-port networks are discussed in detail.
|
219 |
Basis Functions With Divergence Constraints for the Finite Element MethodPinciuc, Christopher 19 December 2012 (has links)
Maxwell's equations are a system of partial differential equations of vector fields. Imposing the constitutive relations for material properties yields equations for the curl and divergence of the electric and magnetic fields. The curl and divergence equations must be solved simultaneously, which is not the same as solving three separate scalar problems in each component of the vector field.
This thesis describes a new method for solving partial differential equations of vector fields using the finite element method. New basis functions are used to solve the curl equation while allowing the divergence to be set as a constraint. The basis functions are defined on a mesh of bricks and the method is applicable for geometries that conform to a Cartesian coordinate system. The basis functions are a combination of cubic Hermite splines and second order Lagrange interpolation polynomials. The method yields a linearly independent set of constraints for the divergence, which is modelled to second order accuracy within each brick.
Mesh refinement is accomplished by dividing selected bricks into $2\times 2\times 2$ smaller bricks of equal size. The change in the node pattern at an interface where mesh refinement occurs necessitates a modified implementation of the divergence constraints as well as additional constraints for hanging nodes. The mesh can be refined to an arbitrary number of levels.
The basis functions can exactly model the discontinuity in the normal component of the field at a planar interface. The method is modified to solve problems with singularities at material boundaries that form $90^{\circ}$ edges and corners.
The primary test problem of the new basis functions is to obtain the resonant frequencies and fields of three-dimensional cavities. The new basis functions can resolve physical solutions and non-physical, spurious modes. The eigenvalues obtained with the new method are in good agreement with exact solutions and experimental values in cases where they exist. There is also good agreement with results from second-order edge elements that are obtained with the software package HFSS.
Finally, the method is modified to solve problems in cylindrical coordinates provided the domain does not contain the coordinate axis.
|
220 |
Basis Functions With Divergence Constraints for the Finite Element MethodPinciuc, Christopher 19 December 2012 (has links)
Maxwell's equations are a system of partial differential equations of vector fields. Imposing the constitutive relations for material properties yields equations for the curl and divergence of the electric and magnetic fields. The curl and divergence equations must be solved simultaneously, which is not the same as solving three separate scalar problems in each component of the vector field.
This thesis describes a new method for solving partial differential equations of vector fields using the finite element method. New basis functions are used to solve the curl equation while allowing the divergence to be set as a constraint. The basis functions are defined on a mesh of bricks and the method is applicable for geometries that conform to a Cartesian coordinate system. The basis functions are a combination of cubic Hermite splines and second order Lagrange interpolation polynomials. The method yields a linearly independent set of constraints for the divergence, which is modelled to second order accuracy within each brick.
Mesh refinement is accomplished by dividing selected bricks into $2\times 2\times 2$ smaller bricks of equal size. The change in the node pattern at an interface where mesh refinement occurs necessitates a modified implementation of the divergence constraints as well as additional constraints for hanging nodes. The mesh can be refined to an arbitrary number of levels.
The basis functions can exactly model the discontinuity in the normal component of the field at a planar interface. The method is modified to solve problems with singularities at material boundaries that form $90^{\circ}$ edges and corners.
The primary test problem of the new basis functions is to obtain the resonant frequencies and fields of three-dimensional cavities. The new basis functions can resolve physical solutions and non-physical, spurious modes. The eigenvalues obtained with the new method are in good agreement with exact solutions and experimental values in cases where they exist. There is also good agreement with results from second-order edge elements that are obtained with the software package HFSS.
Finally, the method is modified to solve problems in cylindrical coordinates provided the domain does not contain the coordinate axis.
|
Page generated in 0.0375 seconds