Spelling suggestions: "subject:"nonwetting"" "subject:"non_wetting""
121 |
Real textile wastewater treatment by membrane distillation and the effect of pretreatments to prevent wetting: A case studyRodrigues, Mariana 04 1900 (has links)
The goal of this case study was to investigate the behavior of real textile wastewater
in DCMD (Direct Contact Membrane Distillation) treatment and subsequently to
develop a simple and effective pretreatment for it. To this moment, this work is one of
the only studies to make an in-depth analysis of the treatment while considering the
complexity of this effluent, which is inherently composed of Volatile Organic
Compounds (VOCs) and surfactants. After the application of pretreatment, it became
clear that the main concern with textile wastewater treatment using MD is wetting, not
fouling. Sedimentation and filtration alone were effective in removing suspended
solids, but insufficient in stopping wetting. However, neutralization before
sedimentation and filtration was proven to be a fundamental step in reducing wetting
rates. This improved performance happens due to the change in pH of the wastewater
sample, which increases the rejection rates by the membrane. The best experiments,
neutralized to pHs 7.40 and 9.06, achieved up to 99.89% rejection by the membrane,
with up to 97% conductivity decrease when compared to an experiment without
neutralization, 97% removal of COD, and 98% TOC. Overall, the permeate obtained
in this work after pretreatment demonstrated excellent quality, and the recovered
effluent can possibly be reused in the textile industry, aiming for Zero Liquid
Discharge (ZLD) processes. Thus, scaling up this technology for real industrial use is
still necessary, tailoring the treatment to the effluent's characteristics to obtain the best
results.
|
122 |
Controlled Pre-Wetting of Spread Powder and Its Effects on Part Formation and Printing Parameters in Binder Jetting Additive ManufacturingInkley, Colton G 09 June 2022 (has links) (PDF)
Binder jetting is an additive manufacturing process that layer by layer builds a 3D model by selectively binding regions of powder using binder deposited though an inkjet printhead. The process offers several advantages over other additive manufacturing processes including fast build rates, vast material selection, decreased cost, and part resolution. The main disadvantage of binder jetting is poor mechanical properties, stemming from a poor understanding of the process physics. Porosity in final parts is not uncommon, but there is little understanding of where the porosity originates. The purpose of this thesis is to report the investigation of increased powder bed cohesion and its effects on part formation, part properties, and printing parameters in binder jetting. The interaction between binder and powder is complex. Binder exiting the printhead impacts the powder bed at speeds up to 10 m/s. The kinetic energy carried by the droplet disperses into the powder bed on impact, causing some powder particles to eject from the bed and other particles to rearrange within the bed. The particle ejection and rearrangement is theorized to be the physical cause of porous regions in binder jetted parts. This work uses a method called pre-wetting to introduce small amounts of moisture into the powder bed to effectively increase the cohesive forces between powder particles. Increased cohesion makes particle ejection and rearrangement during the powder/binder interaction more difficult. A method of accomplishing pre-wetting was developed and achieved successful moisture delivery using water and a water/tri-ethylene glycol mixture. Printed lines were used to characterize moisture content and study its effects on line formation and saturation levels. Low levels of moisture were shown to perform the best. Particle ejection and rearrangement was shown to decrease with moisture addition. Pre-wetting was shown to eliminate the defect known as balling, increasing the parameters known to successfully print lines. Water was identified as a poor substance for pre-wetting due to rapid evaporation, but tri-ethylene glycol/water solutions succeeded in proper moisture delivery. Saturation levels in lines decrease with added moisture and part dimensions increase. high-speed x-ray imaging verified pre-wetting reduction in particle ejection and rearrangement as well as supply some preliminary understanding of void formation during the printing process. The first few layers of the binder jetting process have been shown to increase in surface roughness values when compared to the undisturbed powder bed. This is likely due to a balling-like effect seen in layers. The effects of pre-wetting on layer and multi-layer formation were studied. Pre-wetting reduced the surface roughness levels in printed layers to the levels near the levels seen in undisturbed powder beds. In contrast, saturation levels in layers and multi-layers increased in value above those found in parts printed into dry powder, giving indication that porous regions within bound parts are being eliminated. Layer and multi-layer parts showed increased part dimensions with the addition of moisture. Overall, pre-wetting was shown to greatly reduce the effects of the binder/powder interaction and results strongly suggest that pre-wetting mitigates defect creation during the printing process. Further research should include testing of thicker multi-layer parts to study how saturation trends continue with increased layer numbers. In-process drying should be used in conjunction with pre-wetting in multi-layer parts to determine its effects on saturation levels and part dimensions. Post processing should be done to partially sinter, or infiltrate multi-layer parts created with and without pre-wetting to analyze porosity.
|
123 |
Elastocapillary interactions between liquids and thin solid films under tensionSchulman, Rafael D January 2018 (has links)
PhD Thesis / In this thesis, experiments are described which study the elastocapillary interactions between liquids and taut solid films. The research employs contact angle measurements to elucidate how capillary forces deform compliant solid structures, but also to attain fundamental insight into the energy of interfaces involving amorphous solids.
The majority of the work focuses on how capillary deformations of compliant elastic membranes introduce modifications to descriptions of common wetting phenomena. Particular focus is given to studying partial wetting in the presence of compliant membranes in various geometries: droplet on a free-standing membrane, droplet capped by a membrane but sessile on a rigid substrate, and droplet pressed between two free-standing membranes. The mechanical tension in these membranes is found to play an equivalent role as the interfacial tensions. As such, the mechanical tension is incorporated into Young-Dupre's law (capped droplet on a rigid substrate) or Neumann's triangle (droplet on free-standing membrane), leading to departures from the classical wetting descriptions. In addition, one study is conducted investigating how viscous dewetting is affected by the liquid film being capped by an elastic film. The results of this study show that the dewetting rate and rim morphology are dictated by the elastic tension.
Another important aspect of the work is demonstrating the utility of anisotropic membrane tension for liquid patterning. A biaxial tension is shown to produce droplets and dewetting holes which are elongated along the high tension direction. The compliant membrane geometry can also be designed to produce droplets and holes with square morphology.
In the final project, the surface energy of strained glassy and elastomeric solids is studied. Glassy solids are shown to have strain-dependent surface energies, which implies that surface energy (energy per unit area) and surface stress (force per unit length) are not equivalent for this class of materials by virtue of the Shuttleworth equation. On the other hand, this study provides strong evidence that surface energy and surface stress are equivalent for elastomeric interfaces. / Thesis / Doctor of Philosophy (PhD)
|
124 |
Surface diffusion: defining a new critical effective radius for holes in thin filmsZigelman, Anna, Novick-Cohen, Amy 22 September 2022 (has links)
We explore a specific small geometry containing a single thin bounded grain on a substrate with a hole at
its center. By employing a mathematical model based on surface diffusion, no flux boundary
conditions, and prescribed contact angles, we study the evolution of the hole as well as the exterior
surface of the grain, based on energetic considerations and dynamic simulations. Our results
regarding the formation and evolution of holes in thin films in small geometries shed light on various
nonlinear phenomena associated with wetting and dewetting.
|
125 |
Dynamics and Statics of Three-Phase Contact LineZhao, Lei 17 September 2019 (has links)
Wetting, which addresses either spontaneous or forced spreading of liquids on a solid surface, is a ubiquitous phenomenon in nature and can be observed by us on a daily basis, e.g., rain drops falling on a windshield and lubricants protecting our corneas. The study of wetting phenomena can be traced back to the observation of water rising in a capillary tube by Hauksbee in 1706 and still remains as a hot topic, since it lays the foundation for a wide spectrum of applications, such as fluid mechanics, surface chemistry, micro/nanofluidic devices, and phase change heat transfer enhancement. Generally, wetting is governed by the dynamic and static behaviors of the three-phase contact line. Therefore, a deep insight into the dynamics and statics of three-phase contact line at nanoscale is necessary for the technological advancement in nanotechnology and nanoscience. This dissertation aims to understand the dynamic wetting under a molecular kinetic framework and resolve the reconfiguration of liquid molecules at the molecular region of contact line.
Water spreading on polytetrafluoroethylene surfaces is selected as a classical example to study the dynamic behaviors of three-phase contact line. To accommodate the moving contact line paradox, the excess free energy is considered to be dissipated in the form of molecular dissipation. As-formed contact line friction/dissipation coefficient is calculated for water interacting with PTFE surfaces with varying structures and is found to be on the same order of magnitude with dynamic viscosity. From an ab initio perspective, contact line friction is decomposed into contributions from solid-liquid retarding and viscous damping. A mathematical model is established to generalize the overall friction between a droplet and a solid surface, which is able to clarify the static-to-kinetic transition of solid-liquid friction without introducing contact angle hysteresis. Moreover, drag reduction on lotus-leaf-like surface is accounted for as well. For the first time, the concept of contact line friction is used in the rational design of a superhydrophobic condenser surface for continuous dropwise condensation.
We focus on the transport and reconfiguration of liquid molecules confined by a solid wall to shed light on the morphology of the molecular region of a three-phase contact line. A governing equation, which originates from the free energy analysis of a nonuniform monocomponent system, is derived to describe the patterned oscillations of liquid density. By comparing to the Reynolds transport theorem, we find that the oscillatory profiles of interfacial liquids are indeed governed in a combined manner by self-diffusion, surface-induced convection and shifted glass transition. Particularly for interfacial water, the solid confining effects give rise to a bifurcating configuration of hydrogen bonds. Such unique configuration consists of repetitive layer-by-layer water sheets with intra-layer hydrogen bonds and inter-layer defects. Molecular dynamics simulations on the interfacial configuration of water on solid surfaces reveal a quadratic dependence of adhesion on solid-liquid affinity, which bridges the gap between macroscopic interfacial properties and microscopic parameters. / Doctor of Philosophy / The study of wetting phenomena can be traced back to the observation of water rising in a capillary tube by Hauksbee in 1706 and still remains as a hot topic, since it lays the foundation for a wide spectrum of applications, such as fluid mechanics, surface chemistry, micro/nanofluidic devices, and phase change heat transfer enhancement. The conventional hydrodynamic analysis with no slip boundary condition predicts a diverging shear stress at the contact line as well as an unbounded shear force exerted on the solid surface. To accommodate this paradox, different mechanism and models have been proposed to clarify the slip between a moving contact line and a solid surface. Although almost all models yield reasonable agreement with experimental observations or numerical simulations, it is still difficult to pick up a specific model using only macroscopic properties and experiment-accessible quantities, because the energy dissipation mechanism during dynamic wetting is not identified and the contact line deforms over different length scales.
In this dissertation, we ascribe the energy dissipation in dynamic wetting to contact line friction/dissipation under the framework of molecular kinetic theory, as it is assumed that the contact line is constantly oscillating around its equilibrium position. By decomposing contact line friction into two contributions: solid-liquid retarding and viscous damping, we are able to derive a universal model for the contact line friction. This model predicts a decaying solid-liquid friction on superhydrophobic surfaces, corresponding to the lotus effect. In the meantime, this model is able to clarify the recently-discovered static-to-kinetic transition of frictional force between a sessile drop and a solid surface. Later, we used the concept of contact line friction in the droplet growth process in dropwise condensation so as to promote the rational design of superhydrophobic condenser surfaces for sustainable dropwise condensation.
As the morphology of a contact line is dependent on the length scale of interest, we focus on the molecular region of contact line. We study the transport and structural change of liquid molecules that are several molecular layers away from the solid surface. It is found that liquid molecules in this region experience patterned density oscillations, which cannot be simply attributed to the random deviations from continuum limit. By combining free energy analysis and Reynolds transport theorem, it is demonstrated that the omnipresent density oscillations arise from the collective effects of self-diffusion, surface-induced convection and shifted glass transition. For liquid water, we propose a bifurcating hydrogen bonding network in contrast to its tetrahedron configuration in bulk water.
|
126 |
Studies of Bitumen AerationMa, Juan 18 March 2015 (has links)
In the oil sand industry, bitumen is separated from sands by aerating the heavy oil so that it can float out of a flotation vessel, leaving the unaerated sands behind. A bubble-against-plate apparatus equipped with a high-speed camera has been developed to record the optical interference patterns of the wetting films formed on a flat surface and subsequently obtain the temporal and spatial profiles of the films offline using the Reynolds lubrication theory. The technique has been used to study the interaction mechanisms between air bubbles and bitumen. It has been found that the film thinning kinetics increases in the order of asphaltene, bitumen, and maltene, and that the kinetics increases sharply with increasing temperature.
In addition to obtaining kinetic information, the temporal and spatial profiles of the wetting films have been used to derive appropriate hydrodynamic information that can be used to determine the disjoining pressures (∏) in the wetting films. The results obtained in the present work show that ∏ < 0 for maltene and bitumen, while ∏ > 0 for asphaltene at temperatures in the range of 22 to 80 °C. The disjoining pressure data have been analyzed by considering the contributions from the hydrophobic and steric forces in addition to the classical DLVO forces. It has been found that the hydrophobic force increases with increasing temperature, which corroborates well with contact angle data. Dynamic contact angle measurements show that air bubbles attach on bitumen with relatively small contact angles initially but increase sharply to >90° . The extent and the kinetics of contact angle change increase sharply with increasing temperature. These findings suggest that the primary role of temperature may be to increase iii bitumen hydrophobicity and hence hydrophobic force, which is the driving force for bubblebitumen interaction. A thermodynamic analysis carried out on the basis of the Frumkin-Derjaguin isotherm suggests that the disjoining pressure will remain positive (and hence no flotation) until the hydrophobic force becomes strong enough (due to temperature increase) to overcome the positive disjoining pressure created during the course of bitumen liberation. / Ph. D.
|
127 |
Hydrophobic Forces in Wetting FilmsPan, Lei 11 January 2010 (has links)
Flotation is an important separation process used in the mining industry. The process is based on hydrophobizing a selected mineral using an appropriate surfactant, so that an air bubble can spontaneously adhere on the mineral surface. The bubble-particle adhesion is possible only when the thin film of water between the bubble and particle ruptures, just like when two colloidal particles or air bubbles adhere with each other. Under most flotation conditions, however, both the double-layer and dispersion forces are repulsive, which makes it difficult to model the rupture of the wetting films using the DLVO theory.
In the present work, we have measured the kinetics of film thinning between air bubble and flat surfaces of gold and silica. The former was hydrophobized by ex-site potassium amyl xanthate, while the latter by in-site Octadecyltrimetylammonium chlroride. The kinetics curves obtained with and without theses hydrophobizing agents were fitted to the Reynolds lubrication theory by assuming that the driving force for film thinning was the sum of capillary pressure and the disjoining pressure in a thin film. It was found that the kinetics curves obtained with hydrophilic surfaces can be fitted to the theory with the disjoining pressure calculated from the DLVO theory. With hydrophobized surfaces, however, the kinetics curves can be fitted only by assuming the presence of a non-DLVO attractive force (or hydrophobic force) in the wetting films. The results obtained in the present work shows that long-range hydrophobic forces is responsible for the faster drainage of wetting film.
It is shown that the changes in hydrophobic forces upon the thin water film between air bubble and hydrophobic surface is dependent on hydrophobizing agent concentration, immersion time and the electrolyte concentration in solution. The obtained hydrophobic forces constant in wetting film K132 is compared with the hydrophobic forces constant between two solid surfaces K131 to verify the combining rule for flotation. / Master of Science
|
128 |
The Effect of a wetting agent, sodium lauryl sulfate, on the efficiency of the fractional liquid extraction of a mixture of ethanol and isopropanol with benzene and waterGonzalez, Juan Orts January 1950 (has links)
Solvent extraction, as a chemical engineering method, has been the subject of a great deal of research during the past quarter century. The analogy between this operation and the other diffusional processes, distillation and gas absorption has long been recognized; common theoretical foundations have been found for all three processes. In each case mass is transferred from one fluid phase to another across an interface. Recent progress in the field of extraction has been in the direction of determining the quantitative data for the design of equipment in expanding and improving such industrial applications as have already been made, and in developing new modifications of the basic process of simple liquid extractions. Among these developments is that of fractional liquid extraction.
The process of fractional liquid extraction is analogous to that of fractional distillation in that the components to be separated are distributed unequally between two fluid phases. In the case of fractional extraction the two phases concerned are the two solvents, and the components to be separated are distributed between these two phases in a manner which is dependent on their relative solubility in the solvents chosen. Somewhat better separation than that attainable by distillation is theoretically possible by fractional extraction in that two solvents are chosen, each of which has a preferential effect on certain components of the mixture to be separated. Yet even in the case of fractional extraction, the possibilities of economy inherent in the thermodynamic advantages of extraction over distillation apparently are not completely attained. The difficulty seems to be one of obtaining better contact between the two phases involved in this and other methods of extraction.
The problem of securing intimate and continuous contact between the solvents and feeds involved is one that has greatly vexed the designers of extraction equipment, as evidenced by the numerous patents that have been obtained on ingenious designs. Many different combinations of sprays and baffles, with and without packing, have been developed, the former to produce the necessary dispersion of one liquid within another, and the latter to maintain this dispersed phase in contact with the continuous phase that constitutes the main body of liquid within the equipment. The question of interfacial tension between the two phases is intimately related to the question of contact in that it vitally affects the production and maintenance of the dispersed phase. The effect is mentioned qualitatively in the literature, but little data on the relationship of surface tension to extraction efficiency are found.
It was the purpose of this investigation to study the effect of a wetting agent, sodium lauryl sulfate, on the efficiency of the fractional liquid extraction of a mixture of ethanol and ethanol and isopropanol with benzene and water. / Master of Science
|
129 |
The fluid mechanics of tensioned web roll coatingBenkreira, Hadj, Shibata, Yusuke, Ito, K. 26 March 2021 (has links)
Yes / Tensioned web-roll coating is widely used but has surprisingly received little research attention. Here, a new semi-empirical model that predicts film transfer from applicator roller to web is developed and tested against data collected from a pilot coating line. The film transfer is found to vary linearly with web to applicator speed ratio S. Flow stability investigations revealed three types of defects: rivulets, air entrainment due to dynamic wetting failure and cascade, occurring at different values of S and capillary number Ca. Rivulets occurred at Ca< 0.4 and S> 0.71-0.81, air entrainment at Ca>0.4 and S>0.71-0.83 and cascades at S>1.1 for Ca up to 6. Web speeds at which dynamic wetting failure occurred were, for the same Ca, comparatively higher than those that occur in dip coating. The data show that such hydrodynamic assistance is due to the coating bead being confined, more so with increasing web wrap angle β. / The authors acknowledge the support of the Films R&D Centre of Toyobo Co. Ltd., Otsu, Japan and of the Thin Liquid Films Research Group of the University of Bradford, UK.
|
130 |
Dynamic wetting in metering and pre-metered roll coatingBenkreira, Hadj 29 October 2008 (has links)
Yes
|
Page generated in 0.0664 seconds