• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 224
  • 45
  • 23
  • 19
  • 15
  • 13
  • 11
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 442
  • 95
  • 56
  • 51
  • 50
  • 50
  • 48
  • 44
  • 42
  • 39
  • 36
  • 30
  • 30
  • 29
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

KINETICS OF MOLTEN METAL CAPILLARY FLOW IN NON-REACTIVE AND REACTIVE SYSTEMS

Fu, Hai 01 January 2016 (has links)
Wetting and spreading of liquid systems on solid substrates under transient conditions, driven by surface tension and viscous forces along with the interface interactions (e.g., a substrate dissolution or diffusion and/or chemical reaction) is a complex problem, still waiting to be fully understood. In this study we have performed an extensive experimental investigation of liquid aluminum alloy spreading over aluminum substrate along with corroboration with theoretical modeling, performed in separate but coordinate study. Wetting and spreading to be considered take place during a transient formation of the free liquid surface in both sessile drop and wedge-tee mating surfaces’ configurations. The AA3003 is used as a substrate and a novel self-fluxing material called TrilliumTM is considered as the filler metal. In addition, benchmark, non-reactive cases of spreading of water and silicon oil over quartz glass are considered. The study is performed experimentally by a high temperature optical dynamic contact angle measuring system and a standard and high speed visible light camera, as well as with infra read imaging. Benchmark tests of non-reactive systems are conducted under ambient environment’s conditions. Molten metal experiment series featured aluminum and silicone alloys under controlled atmosphere at elevated temperatures. The chamber atmosphere is maintained by the ultra-high purity nitrogen gas purge process with the temperature monitored in real time in situ. Different configurations of the wedge-tee joints are designed to explore different parameters impacting the kinetics of the triple line movement process. Different power law relationships are identified, supporting subsequent theoretical analysis and simulation. Under ambient temperature conditions, the non-reactive liquid wetting and spreading experiments (water and oil systems) were studied to verify the equilibrium triple line location relationships. The kinetics relationship between the dynamic contact angle and the triple line location is identified. Additional simulation and theoretical analysis of the triple line movement is conducted using the commercial computer software platform Comsol in a collaboration with a team from Washington State University within the NSF sponsored Grant #1235759 and # 1234581. The experimental work conducted here has been complemented by a verification of the Comsol phase-field modeling. Both segments of work (experimental and numerical) are parts of the collaborative NSF sponsored project involving the University of Kentucky and Washington State University. The phase field modeling used in this work was developed at the Washington State University and data are corroborated with experimental results obtained within the scope of this Thesis.
142

Experimental Studies on CO2 Absorption in Hollow Fiber Membrane Contactor

Lu, Yuexia January 2010 (has links)
Membrane gas absorption technology is considered as one of the promising alternatives to conventional techniques for CO2 separation from the flue gas of fossil fuels combustion. As a hybrid approach of chemical absorption and membrane separation, it may offer a number of important features, including operational flexibility, compact structure, linear scale up and predictable performance. The main challenge is the additional membrane mass transfer resistance, especially when this resistance increases due to the absorbent intruding into the membrane pores. In this thesis, the experimental was set up to investigate how the operating parameters affect the absorption performance when using absorbent in hollow fiber contactor, and to obtain the optimal range of operation parameters for the designated membrane gas absorption system . During 20 days’ continuous experiment, we observed that the CO2 mass transfer rate decreases significantly following the operating time, which is attributed to the increase of membrane mass transfer resistance resulting from partial membrane wetting. To better understand the wetting evolution mechanism, the immersion experiments were carried out to assume that the membrane fibers immersed in the absorbents would undergo similar exposure as those used in the membrane contactor. Various membrane characterization methods were used to illustrate the wetting process before and after the membrane fibers were exposed to the absorbents. The characterization results showed that the absorbent molecules diffuse into the polypropylene (PP) polymer during the contact with the membrane, resulting in the swelling of the membrane. In addition, the effects of operating parameters such as immersion time, CO2 loading, as well as absorbent type on the membrane wetting were investigated in detail. Finally, based on the analysis results, methods to smooth the membrane wetting were discussed. It was suggested that improving the hydrophobicity of PP membrane by surface modification may be an effective way to improve the membrane long-term performance. Modification of the polypropylene membrane by depositing a rough layer of PP was carried out in order to improve the non-wettability of membrane. The comparison of long-term CO2 absorption performance by PP membranes before and after modification proves that the modified polypropylene membranes retained higher hydrophobicity than the untreated polypropylene membrane. Therefore modification is likely to be more suitable for use in membrane gas absorption contactors for CO2 separation, particularly over long operation time.
143

Colloidal interfaces in confinement

Jamie, Elizabeth A. G. January 2011 (has links)
A fluid-fluid demixing colloid-polymer system provides us with an opportunity to study interfacial phenomena that cannot be observed in molecular systems due to unfavourable length and timescales. We develop such a system compatible with cells of varying dimensions, allowing us to investigate confined interfacial behaviour in real space using Confocal Scanning Laser Microscopy. The degree to which a system is affected by the sedimentation-diffusion gradient is dependent on the ratio of the suspension height to the gravitational length of the colloids. We illustrate that we may control the distance of our interface to the critical point by altering the suspension height, determining the importance of the gravitational field. Furthermore, the timescale on which the sedimentation- diffusion gradient is established is considerably longer than that of initial fluid-fluid demixing. We show that after the formation of the macroscopic interface, the system passes through a series of local mechanical equilibria on the way to achieving full equilibrium. Should the system be of sufficient height, it will pass through the gas-liquid critical point opening up new ways to study critical phenomena. The time and length scales of the fluid-fluid demixing of our system may be manipulated by altering the density and viscosity of our solvent. We exploit a slowed phase separation process to study the interplay between demixing and wetting phenomena of systems in the vicinity of a single wetting surface, and confined between two parallel plates. We demonstrate that the presence of a surface strongly affects the morphology of phase separation. The growth of the wetting layer is determined by the demixing regime of the system, and may be accelerated by hydrodynamics. The additional restriction by a second surface limits the lengthscale of coarsening domains and may further alter the mechanism of wetting layer growth.
144

Surface adsorption and pore-level properties of mineral and related systems of relevance to the recycling of paper

Gribble, Christopher Mark January 2010 (has links)
There is a significant problem for the paper recycling industry known as “stickies”. “Stickies” are tacky species, present in recycled paper and coated broke, derived from coating formulations, adhesives, etc. They impact negatively on paper quality and cause web runnability problems by deposit build-up. To sustain recycling, stickies are controlled by adsorbing them onto minerals added to the recycled stock. So the aim of the project was to characterise non-porous and porous minerals suitable for paper-making, and then use the knowledge gained to improve the adsorption of stickies. The pore level properties of the minerals used to control stickies are highly relevant in regulating adsorption of the stickies. Levels of pore architecture were investigated by characterising filter media with porosimetry, porometry, electron microscopy and modelling the combined results. Seven samples were studied, with pore size distributions ranging from simple unimodal to complicated bimodal. Porometry, porosimetry and SEM, individually can only determine primary pore architecture. A combination of experimental and modelling techniques allows a full characterisation of pore architecture from primary to quaternary levels. Calcium carbonates can be modified to change the pore architecture, which affects properties such as wetting. Their pore architecture was investigated to understand why some modified calcium carbonates do not show two distinct wetting rates. The investigation implied a significant surface area could be attributed to nano rugosity. The nano rugosity was responsible for the enhanced wetting of a sample. A zero length column was used to study diffusion and desorption of benzene with calcium carbonate. Desorption and diffusion coefficients for calcium carbonate systems were calculated from the corrected concentration versus time measurements. They showed how the pore architecture affects diffusion and desorption. By comparing the experimental results with a pore network simulation, it was possible to deduce the relative effect of surface diffusion. The adsorption of stickies onto different mineral grades was investigated using a novel proxy method to determine equilibrium constants and adsorption isotherms. The results were then used to understand the influence of particle size on the adsorption behaviour, with three mechanisms proposed. The equilibrium constant and adsorption isotherm data also allowed comparisons between hydrophilic and hydrophobic adsorption onto grades of talc. Recommendations are made for the optimum use of minerals for the removal of stickies, and for in-situ methods for monitoring and optimising removal.
145

Surfactants at non-polar surfaces

Persson, Marcus January 2002 (has links)
The aim of this thesis work was to investigate theadsorption of surfactants to different nonpolar interfaces.Particularly, the effects of the polar group and the nature ofthe hydrophobic interface were elucidated. The interfacialbehavior of the liquid-vapor interface was investigated bymeans of surface tension measurements. Here the effect of thepolar group and the hydrocarbon chain length was investigatedin a systematic manner. It was found that the shorter of thetwo chains examined, decyl, generated a larger surface pressurecontribution than the longer, dodecyl. Furthermore, the sugarbased surfactants behaved differently as compared to theethylene oxide based ones. The former could be modelled byassuming a hard disc behavior of the head group while thelatter displayed polymeric behavior. The influence of saltconcentration on the surface tension behavior of an ionicsurfactant, sodium dodecyl sulphate, was investigated. Theresult could be rationalized by employing the Gouy- Chapmanmodel to the polar region. Furthermore, mixtures of two sugarbased surfactants were investigated by surface tensionmeasurements and the adsorbed amount of the two components atthe interface atdifferent concentrations and fractions in thebulk were obtained by applying the Gibbs surface tensionequation. It was found that the molecule with the smaller headgroup adsorbed preferentially, and more so as the totalsurfactant concentration was increased. These findings could beexplained by considering the interactions generated by thedifferent head groups. The adsorption of sugar surfactants toan isolated hydrophobic surface was studied by means of wettingmeasurements and the behavior was similar to that at theliquid-vapor interface. Wetting isotherms were measured on twodifferent hydrophobic surfaces where the covalently attachedhydrophobic layers were in a crystalline and fluid state,respectively. The wetting results revealed that the sugarsurfactants anchored in the fluid hydrophobic layer. This had asignificant influence on the force profile. For example, at thecrystalline surface the surfactant monolayers were easilyremoved as the surface came into contact at relatively lowapplied loads. This was not the case when the hydrophobic layerwas in a fluid state. Here a significant fraction of thesurfactants remained between the surfaces. Disjoining pressureisotherms were measured using a sugar based surfactant thatwere thoroughly purified and compared to the as receivedsample. Even the purified sample showed a double-layer forcealthough lower as compared to the as received, one. Asignificant difference in foam stability was also observed. / <p>NR 20140805</p>
146

Printing conductive traces to enable high frequency wearable electronics applications

Lim, Ying Ying January 2015 (has links)
With the emergence of the Internet of Things (IoT), wireless body area networks (WBANs) are becoming increasingly pervasive in everyday life. Most WBANs are currently working at the IEEE 802.15.4 Zigbee standard. However there are growing interests to investigate the performance of BANs operating at higher frequencies (e.g. millimetre-wave band), due to the advantages offered compared to those operating at lower microwave frequencies. This thesis aims to realise printed conductive traces on flexible substrates, targeted for high frequency wearable electronics applications. Specifically, investigations were performed in the areas pertaining to the surface modification of substrates and the electrical performance of printed interconnects. Firstly, a novel methodology was proposed to characterise the dielectric properties of a non-woven fabric (Tyvek) up to 20 GHz. This approach utilised electromagnetic (EM) simulation to improve the analytical equations based on transmission line structures, in order to improve the accuracy of the conductor loss values in the gigahertz range. To reduce the substrate roughness, an UV-curable insulator was used to form a planarisation layer on a non-porous substrate via inkjet printing. The results obtained demonstrated the importance of matching the surface energy of the substrate to the ink to minimise the ink de-wetting phenomenon, which was possible within the parameters of heating the platen. Furthermore, the substrate surface roughness was observed to affect the printed line width significantly, and a surface roughness factor was introduced in the equation of Smith et al. to predict the printed line width on a substrate with non-negligible surface roughness (Ra ≤ 1 μm). Silver ink de-wetting was observed when overprinting silver onto the UV-cured insulator, and studies were performed to investigate the conditions for achieving electrically conductive traces using commercial ink formulations, where the curing equipment may be non-optimal. In particular, different techniques were used to characterise the samples at different stages in order to evaluate the surface properties and printability, and to ascertain if measurable resistances could be predicted. Following the results obtained, it was demonstrated that measurable resistance could be obtained for samples cured under an ambient atmosphere, which was verified on Tyvek samples. Lastly, a methodology was proposed to model for the non-ideal characteristics of printed transmission lines to predict the high frequency electrical performance of those structures. The methodology was validated on transmission line structures of different lengths up to 30 GHz, where a good correlation was obtained between simulation and measurement results. Furthermore, the results obtained demonstrate the significance of the paste levelling effect on the extracted DC conductivity values, and the need for accurate DC conductivity values in the modelling of printed interconnects.
147

Angled curtain coating : an experimental study : an experimental investigation into the effect of die angle on air entrainment velocity in curtain coating under a range of operating conditions

Elgadafi, Mansour Masoud January 2010 (has links)
In all coating applications, a liquid film displaces air in contact with a dry solid substrate. At a low substrate speed a thin uniform wetting line is formed on the substrates surface, but at a high speed the wetting line becomes segmented and unsteady as air becomes entrained between the substrate and the liquid. These air bubbles affect the quality of the coated product and any means to postpone this at higher speeds without changing the specifications of the coating liquid is desirable. This research assesses the validity of a theoretically based concept developed by Blake and Rushack [1] and exploited by Cohu and Benkreira [2] for dip coating. The concept suggests that angling the wetting line by an angle ß would increase the speed at which air is entrained by a factor 1/cos ß. In practice, if achieved this is a significant increase that would result in more economical operation. This concept was tested in a fast coating operation that of curtain coating which is already enhanced by what is known as hydrodynamic assistance [2]. Here we are effectively checking an additional assistance to wetting. The work, performed on a purposed built curtain coater and a rotating die, with a range of fluids showed the concept to hold but provided the data are processed in a way that separate the effect of curtain impingement from the slanting of the wetting line.
148

Wetting and evaporation of human blood in relation to forensic analysis / Mouillage et évaporation de sang humain : approche physico-chimique pour l'aide au diagnostic criminel

Smith, Fiona 25 October 2018 (has links)
La physique de mouillage et de séchage de sang n’est pas encore bien connue. Dans le cadre d’un travail collaboratif, une étude est réalisée afin d’apporter de nouveaux outils aux équipes d’investigations criminelles. L’objectif est de comprendre les dynamiques qui entrent en jeu dans la formation de traces de sang, un fluide complexe. Nous nous intéressons aux traces dites passives telles que l’égouttement ou l’accumulation, qui résultent de l’action de la pesanteur. Nous considérons d’abord les gouttes passives. Le comportement d’impact de gouttes de fluides complexes est un sujet qui a été largement étudié mais suscite encore de vifs débats. Bien que le séchage d’une goutte déposée ait déjà été étudié, ceci n’est pas le cas pour des gouttes qui viennent impacter perpendiculairement une surface, tombant depuis une certaine hauteur. Parallèlement nous étudions le séchage de flaques de sang car leur dynamique de séchage n’a pas été étudiée jusqu’à présent. Différents paramètres tels que la nature des substrats, l’humidité et la température sont pris en compte afin de comprendre le lien entre la typologie des motifs séchés et les phénomènes observés en vue de répondre à des applications criminelles. Enfin des relations empiriques sont établies. Grace à des méthodes inverses, ces relations permettent, par la suite, d’obtenir une estimation de la vitesse d’impact de gouttes séchées. / The physics behind wetting and drying of blood is not yet completely understood. In the context of a collaborative project, new techniques have been developed to provide evidence for investigators in crime solving. Given that blood is a complex fluid, the major aim has been to investigate the dynamics involved in the patterns of stain formation. Interest is focused on passive stains, which result from the action of gravity in dripping or blood flow accumulation. In the case of drip stains, the impact behaviour of complex fluid droplets, despite many studies, raises much debate. Although the drying dynamics of a deposited drop of blood were already studied, this is not the case for drops of blood impacting perpendicularly a surface, falling from a certain height. Beside this, until the present work, little attention has been paid to the dynamics controlling the drying of blood pools. In both situations, the influence of different parameters such as substrates, humidity and temperature are examined. Empirical relations are established between final dried blood patterns and the generating mechanism, yielding possible application in blood pattern analysis for forensic investigations. Finally, using inverse methods, the empirical relations allow estimating an impact velocity, for dried drip stains.
149

Avaliação da molhabilidade e das texturas de superfícies nanoestruturadas através da ebulição em piscina de nanofluidos / Evaluation of wettability and the texture of the nanostructured surfaces through the pool boiling of nanofluids

Santos Filho, Erivelto dos 10 April 2017 (has links)
O presente trabalho envolve a análise experimental do efeito da deposição de nanopartículas por meio da ebulição em piscina na molhabilidade e na textura da superfície. Inicialmente, este estudo apresenta uma análise da literatura sobre métodos de avaliação do ângulo de contato, preparo de nanofluidos, procedimentos de avaliação da rugosidade e possíveis efeitos que a deposição de nanopartículas tem sobre a textura da superfície. Verificou-se para as superfícies recobertas com nanopartículas ângulos de contato próximos a zero e comportamento dinâmico para gotas de água depositadas sobre elas. Desta forma, optou-se por avaliar a molhabilidade qualitativamente através da análise da velocidade de espalhamento de uma gota depositada sobre a superfície recoberta. Caracterizou-se também a massa de nanopartículas depositadas, a morfologia e a rugosidade das superfícies. Efetuou-se o recobrimento das superfícies por meio da ebulição em piscina de nanofluidos a base de água deionizada contendo nanopartículas de Al2O3 (10, 20-30 e 40-80 nm), Cu (25 nm) e SiO2 (15 e 80 nm) para concentrações volumétricas de 0,001, 0,01, 0,1 e 0,5%, submetidos a tempos de ebulição de 15, 30, 45 e 180 minutos em superfícies de alumínio e aço inoxidável. Como resultado final deste estudo concluiu-se que a rugosidade superficial e a molhabilidade se elevam com a deposição das nanopartículas. Além disso, a molhabilidade aumenta com o incremento da área da superfície recoberta com aglomerados. / The present study concerns an investigation on the wettability and the surface texture behavior of flat aluminum and stainless steel plates covered with porous thin-films of nanoparticles obtained through pool boiling of nanofluids. Since the contact angle of the obtained surfaces is small and in many cases the deposited droplet exhibits a dynamic behavior, dynamic top-down analyses of spreading droplets were performed. Evaluations were performed of nanoparticles mass deposition on the sample, surface roughness and micro-structural with an SEM (Scanning Electron Microscopy). Experiments were performed for nanofluids containing nanoparticles of Al2O3 (10, 20-30 and 40-80 nm), Cu (25nm) and SiO2 (15 and 80 nm) for volumetric concentrations of 0.001, 0.01, 0.1 and 0.5% for pool boiling time set to 15, 30, 45 and 180 minutes over aluminum and stainless steel plates. As a final result of this study it was found that surface roughness and wettability increase with the deposition of the nanoparticles. In addition, the wettability increases with increasing of the surface area covered with clusters.
150

Etude de réalisation de scellement des MEMS par l’alliage eutectique Al-Ge / study of the bonding of MEMS by Al-Ge eutectic alloy

Lumineau, Victor 13 December 2018 (has links)
Les microsystèmes électromécaniques (MEMS) sont une des révolutions issues de la microélectronique de ces dernières années qui ont permis l’apparition de nouveaux objets connectés à leur environnement tels que les smartphones. Pour répondre entre autres à la problématique de miniaturisation, ces capteurs doivent être assemblés avec les transistors qui les pilotent via des procédés d’intégration en trois dimensions. Les études de la littérature montrent que la brasure à base d’alliage eutectique Al-Ge permet de répondre de ce besoin. Dans le procédé de scellement eutectique Al-Ge, les constituants de l’alliage sont déposés sur au moins une des deux surfaces à coller. La fusion puis la solidification de la brasure va donner lieu à une structure eutectique et fermer mécaniquement l’interface pour former un assemblage. Cependant, des points cruciaux restent encore à approfondir, notamment la fuite de l’alliage liquide en dehors de la zone à coller ainsi que l’apparition de trous à l’interface de scellement.Le but de cette thèse est donc d’étudier dans un premier temps les phénomènes physiques (mouillage, solidification, diffusion) qui déterminent la qualité finale des assemblages. Dans un second temps, ces résultats sont mis à profit pour développer des procédés de scellement hermétiques et avec une bonne tenue mécanique pour l’encapsulation des MEMS. L'étude porte sur l'influence des paramètres tels que la température, l’épaisseur et l’état surfacique des couches, mais également sur les mécanismes de réactivité aux interfaces entre l'alliage liquide et les substrats. / Electromechanical microsystems (MEMS) are one of the main revolutions of microelectronics in recent years. It has permitted the emergence of new objects connected to their environment such as smartphones. To answer the problem of miniaturization, these sensors need to be assembled with their control transistors by three-dimensional packaging. Existing studies show that Al-Ge eutectic bonding meets these criteria. In this process, the constituents of the alloy are deposited on at least one of the two wafers. The melting and then the solidification of the solder will result in a eutectic structure which mechanically closes the interface to form an assembly. However, there are still some issues to be addressed, in particular the leakage of the liquid alloy outside of the bonding area and the presence of voids at the sealing interface.The first goal of this thesis is to study the physical phenomena (wetting, solidification, diffusion) that determine the final quality of the assemblies. Secondly, these results are used to develop hermetic sealing processes, with a high mechanical strength for the packaging of MEMS. The study focuses on the influence of parameters such as temperature, thickness and oxidation of the surfaces, but also on the mechanisms of interfacial reactivity between the liquid alloy and substrates.

Page generated in 0.0717 seconds